

NAVAL POSTGRADUATE SCHOOL Monterey, California

AD-A267 310

THESIS

FATIGUE LIFE PROGRAM USING STRAIN-LIFE METHODS

by

MICHAEL V. SKELLY

March, 1993

Thesis Advisor:

GERALD H. LINDSEY

Approved for public release; distribution is unlimited

93-16924

Security Classification of this page

	REPORT DOCU	MENTATION PAGE							
la Report Security Classification: Unclassified		1h Restrictive Markings							
2a Security Classification Authority		3 Distribution/Availability of Report Approved for public release; distribution is unlimited.							
2b Declassification/Downgrading Schedule									
4 Performing Organization Report Number(s)		5 Monitoring Organization Report Numbe	r(s)						
6a Name of Performing Organization Naval Postgraduate School	6b Office Symbol (if applicable)	7a Name of Monitoring Organization Naval Postgraduate School							
6c Address (city, state, and ZIP code)		7b Address (city, state, and ZIP code)							
Monterey CA 93943-5000 8a Name of Funding/Sponsoring Organization	6b Office Symbol	Monterey CA 93943-5000 9 Procurement Instrument Identification N	lumher						
Address (city, state, and ZIP code)	(if applicable)	10 Source of Funding Numbers							
ridices (erry, state, that 211 code)		Program Element No Project No	Task No Work Unit Accession No						
11 Title (include security classification) FATIGU	JE-LIFE PROGRAM								
12 Personal Author(s) Skelly, Michael V.									
13a Type of Report Master's Thesis	13b Time Covered From To	14 Date of Report (year, month, day) 1993, March, 25	15 Page Count 91						
16 Supplementary Notation The views express of the Department of Defense or the U.S.		hose of the author and do not reflect	the official policy or position						
17 Cosati Codes		inue on reverse if necessary and identify by	block number)						
Field Group Subgroup	Fatigue, Strain-Life	, Aluminum 7075							
10.41	<u> </u>								
A user friendly program was devel strain history. Additionally, the material material constants, such as cyclic strength fatigue life, the program is capable of eith was then utilised to examine the effects of flight load history.	oped to calculate fatig parameters and associ coefficient (K') and oner her keeping them cons	tue life using Strain-Life equations, go inted stress concentration factors can cyclic strain hardening exponent (n') stant or varying them as a function o	be varied. Since certain vary during a material's f elapsed cycles. The program						
20 Distribution/Availability of Abstractunclassified/unlimited _x same as reportE	TIC users	21 Abstract Security Classification Unclassified							
22a Name of Responsible Individual Gerald H. Lindsey		22b Telephone (include Area Code) 22c Office Symbol 408 656 2808 AA/Li							

DD FORM 1473,84 MAR

83 APR edition may be used until exhausted

security classification of this page

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited

FATIGUE LIFE PROGRAM USING STRAIN-LIFE METHODS

by

MICHAEL V. SKELLY Lieutenant, United States Navy B.S., Duke University, 1984

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March, 1993

Author:

Michael V. Skelly

Approved by:

Greald H. Lindsey, Thesis Advisor

Conrad F. Newberry Second Reader

Daniel J. Collins, Chairman

Department of Aeronautics and Astronautics

ABSTRACT

A user friendly program was developed to calculate fatigue life using Strain-Life equations, given either a stress or strain history. Additionally, the material parameters and associated stress concentration factors can be varied. Since certain material constants, such as cyclic strength coefficients (K') and strain hardening exponents (n') vary during a material's fatigue life, the program is capable of either keeping them constant or varying them as a function of elapsed cycles. The program was then utilized to examine the effects of varying K' and n' on the calculated fatigue life of aluminum 7075-T6 under a typical flight load history.

DTIC QUALITY INSTRUCTED 3

TABLE OF CONTENTS

I.	I	NTRODUCTION	1
II.	ST	RAIN-LIFE COMPUTATION PROGRAM	4
	A.	GENERAL	4
	В.	MAIN PROGRAM	4
	C.	USER SELECTABLE OPTIONS	5
	D.	LOAD HISTORY INPUT	10
	Ε.	CALCULATIONS	10
	F.	COMPUTATIONAL SUBROUTINES	11
	G.	DATA OUTPUT	12
	н.	CODE VERIFICATION	12
III	. M	ATERIAL DATA BASE	15
	A.	CYCLIC PROPERTIES	15
	В.	ARCHIVAL DATA	16
ıv.	LO	AD GENERATING PROGRAM LOADGEN	18
	A.	LOAD SPECTRUM CONCEPT	18
	В.	A-6 STRESS SEQUENCE GENERATION	19
v.	APP	ROXIMATION OF K' AND n'	22
	Δ.	EXPERIMENTAL EFFORTS	22

	В.	ESTIMATION OF K' AND n'	26
VI.	COI	MPUTATIONS	29
	A.	COMPARISON PROCEDURE	29
	в.	DISCUSSION OF RESULTS	29
	٠.	DISCOSSION OF RESULTS	23
VII	. D	ISCUSSION/CONCLUSIONS	32
APP	ENDI	X A FLP PROGRAM LISTING	33
	A.	MAIN PROGRAM	33
	B.	SUBROUTINE BATCH	37
	C.	SUBROUTINE CRUNCHER	42
	D.	SUBROUTINE DATADUMP	44
	E.	SUBROUTINE EQUATIONS1	45
	F.	SUBROUTINE EQUATIONS2	45
	G.	SUBROUTINE EQUATIONS3	46
	н.	SUBROUTINE EQUATIONS4	47
	I.	SUBROUTINE EQUATIONS5	47
	J.	SUBROUTINE GetConfig	48
	к.	SUBROUTINE HEADER	49
	L.	SUBROUTINE Klaxon	49
	M.	SUBROUTINE LOADER	50
	N.	SUBROUTINE Loadmaterial	51
	ο.	FUNCTION LOG10	51
	P.	SUBROUTINE MATMENU	52
	0	SUBBOUTTNE Newberkf	54

	R.	SUBROUTINE	NEWMAT		•	•	•	•	•.	•	•	•	•	•	•	•	•	54
	s.	SUBROUTINE	OPTMENU	1.	•												•	57
	т.	SUBROUTINE	OPTMENU	2.					•			•	•	•	•	•	•	61
	U.	SUBROUTINE	OUTPUTE	R.	•								•					64
	٧.	SUBROUTINE	Peterso.	nKf		•		•										64
	W.	FUNCTION RO	tated										•					65
	х.	SUBROUTINE	TYPIN														•	65
	Y.	SUBROUTINE	TYPINST	RING	;					•			•					65
	z.	SUBROUTINE	UPDATEM	ENU													•	66
	AA.	SUBROUTINE	UPDATEM	ENU2	•	•			•				•					67
	AB.	FUNCTION xx	Kf			•			•	•							•	68
	AC.	FUNCTION xx	mf										•				•	68
	AD.	FUNCTION xx	NNf coun	t.	•		•	•	•	•	•	•	•	•		•	•	69
APPI	ENDIX	K B. PROGRÆ	M LOADG	EN	•		•	•	•	•	•	•	•	•	•	•		70
APPI	ENDIX	C. MATLAE	B DATA R	EDUC	TI:	ON	P	RO	GR	ΑM	Ī		•				•	73
	A.	PROGRAM COL	E	• •		•		•						•	•	•		73
	В.	PROGRAM OUT	PUT/RES	ULTS		•	•	•	•		•		•	•	•	•	•	78
APPI	ENDI	CD. MATERI	AL DATA	BAS	E		•	•	•				•				•	79
	A.	BRITISH/AME	ERICAN U	NITS					•			•		•	•			79
	В.	SI UNITS .			•		•	•	•	•	•	•	•	•	•	•	•	80
LIST	r of	REFERENCES									•						•	81

INITIAL	DISTRIBUTION	LIST																82
			•	•	•	•	•	-	•	-	•	•	•	•	•	•	•	

LIST OF FIGURES

Figure	1	Options Menu 1	6
Figure	2	Option Menu 2	8
Figure	3	Material Entry Menu	9
Figure	4	Sample output summary	13
Figure	5	Sample step by step output	13
Figure	6	Hysteresis response of copper. (From Ref. 1)	16
Figure	7	Cycle by cycle load application	20
Figure	8	Fatigue test specimen	22
Figure	9	Stress-Strain Curves	25
Figure	10	Strain-Life Deviation	26
Figure	11	K' and n' Functions	28

I. INTRODUCTION

There are distinctly different approaches used to calculate cumulative fatigue damage during the crack initiation and crack propagation stages. Since the United States Navy, Naval Air Systems Command considers any cracked part to be "failed", the focus of this thesis was on crack initiation.

The definition of fatigue damage during the initiation phase of a crack's life is difficult. The damage during the crack initiation phase can be related to dislocations, slip bands, microcracks, etc, but the phenomena are microscopic and are not easily correlated with macroscopic measurements. Because of this, the damage summing methods typically used to calculate crack initiation are empirical in nature. They relate damage to life consumed. Life here refers to the physical separation of a small test specimen which is subsequently used to approximate crack initiation in larger aircraft components, since larger components will have a much larger critical crack length.

The most common method for summing damage is to use the linear damage rule, also known as Miner's rule:

$$\sum \frac{n_i}{N_i} \ge 1 \tag{1}$$

where n_i is the number of cycles applied at a given stress level and N_i is the total fatigue life for constant amplitude loading, at that stress level.

When applying Miner's rule to a variable load history, the life used up at each load change has to be calculated. This can be done with one of several possible strain-life equations; for instance:

Morrow's:
$$\frac{\Delta \epsilon}{2} = \frac{\sigma_f' - \sigma_0}{E} (2N_f)^b + \epsilon_f'(2N_f)^c \qquad (2)$$

Manson-Halford:
$$\frac{\Delta \epsilon}{2} = \frac{\sigma_f' - \sigma_0}{E} (2N_f)^b + \epsilon_f' \left(\frac{\sigma_f' - \sigma_0}{\sigma_f'} \right)^{\frac{c}{b}} (2N_f)^c (3)$$

Smith-Watson-Topper:
$$\sigma_{\text{max}} \frac{\Delta \epsilon}{2} = \frac{(\sigma_f')^2}{E} (2N_f)^{2b} + \sigma_f' \epsilon_f' (2N_f)^{b+c}$$
 (4)

All three of these equations require the local change in strain and either the maximum or mean local stress. These can be obtained from relating the far field stress to the local stress using Neuber's empirical rule:

$$K_t^2 S e = \sigma \epsilon \tag{5}$$

Relating stress changes to strain changes can be done with the monotonic stress-strain equation:

$$\epsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{\frac{1}{n}} \tag{6}$$

or the hysteresis equation:

$$\frac{\Delta\epsilon}{2} = \frac{\Delta\sigma}{2E} + \left(\frac{\Delta\sigma}{2K'}\right)^{\frac{1}{R'}} \tag{7}$$

[Reference 1]

Programs are available to solve strain-life equations; however, a fatigue life program was needed for research at the Naval Postgraduate School, where the user can modify the solution algorithms or have access to the program's source code to make changes and explore various facets of the theory.

For example, to evaluate the effects of varying the cyclic strength coefficient and the cyclic strain hardening exponent throughout the duration of applied loading, a program named FLP was developed. This program solved the three strain-life equations, (Equations (2) through (4),) using either fixed or varying values for n' and K' as specified by the user.

To develop a realistic sequence of loads from a known spectrum, LOADGEN was created. It was used to develop a realistic load history for an A-6 based on the three σ "g" count data developed by LT Rich Walters [Reference 2]. The load sequences were processed with the program using various strain-life equations.

II. STRAIN-LIFE COMPUTATION PROGRAM

A. GENERAL

The Fatigue Life Program (FLP) was written using Microsoft's QuickBasic. QuickBasic is a relatively simple programming language, but an updated and more capable version of BASIC, which allows the program to be compiled into an .EXE file, executable on any computer using MS-DOS or PC-DOS operating system 2.1 or later.

FLP was designed to be as "user friendly" as possible, and to the greatest extent practical, menus were used to set the various options. The program was built in a modular fashion and documentation was included throughout the program to facilitate debugging and later modifications.

B. MAIN PROGRAM

The main program controls the general processing flow. It starts by establishing certain constants and variables to be used throughout the program, and gives initial values to most of the user selected options, which could be considered default values. Examples of default values would be British units and aluminum 7075, which appear as being the units and material selected when the program is first started.

The program then enters a perpetual DO loop wherein it sets all the user definable options, reads in the specified

load sequence, processes the load sequence, and outputs processed data to the designated file before returning to the user definable options. The loop is exited and the program terminated by pressing ESCAPE when the option menus are being displayed.

The main program also sets the video configuration for the program, allowing it to automatically select the best mode available, and incorporating error trapping sequences to indicate when insufficient memory is available.

C. USER SELECTABLE OPTIONS

The selection of the various options available to the user is accomplished through several menus, each of which is a subroutine, or set of subroutines. There are two menus to define user selectable options, and a third to input properties for new materials. All three of these menus print a list of key instructions at the top of the screen, and call on another subroutine to update the display screen.

The first menu to appear is shown in Figure 1 and allows the operator to:

- choose between using British/U.S. (Brit) units or Standard International (SI) units;
- choose a local stress concentration factor (K_t);
- choose a method to calculate the fatigue stress concentration factor, either by use of Neuber's method, Peterson's method, or manual entry;
- choose another screen mode if more than one is available;

- choose a material from the existing material data base or manually enter a new material, which may be saved in the material data base;
- review the material properties associated with the selected material.

Prior to exiting this menu, the program checks to ensure that a value has been either entered or calculated for the fatigue stress concentration factor (K_f) . If a value for K_f other than zero isn't present, the program will prompt the user for one. The program may also be terminated normally from the first options menu by pressing **ESCAPE**.

```
UP ..... Move to next field
  DOWN ..... Move to previous field
  LEFT/RIGHT .... Change field up/down
  F1 .... Display matrial's parameters
  ENTER .... Start with current values
  ESCAPE ..... Quit Program
Type of units (SI or British)
                                [Brit]
Material
                                [ Aluminum 7075-T6 as recieved ]
Stress concentration factor (Kt) [ 1.000 ]
Method to calculate Kf
                                [ Manually Entered ]
Fatigue stress conc. factor (Kf) [ 0.000 ]
Screen Mode
                                [ 12 ]
```

Figure 1 Options Menu 1

The second menu of user selectable functions, shown in Figure 2, appears when the operator exits the first menu by pressing *RETURN*. It allows the operator to:

- choose between using stress or strains as input loads:
- choose which strain-life equation will be used, either Morrow's, Manson-Halford, or Smith-Watson-Topper;
- choose between using either fixed values for the cyclic strength coefficient and cyclic strain hardening exponent or using values that are a function of elapsed cycles;
- choose between calculating the cycles to failure, the effects of a single load block or processing a preprogrammed series of calculations;
- select the name of the input file containing the load history;
- select the name of the output file;
- activate and deactivate the program's sound.

The sound function mentioned above is to assist the program's user when processing a large batch of calculations or making a long life calculation. When activated, it will beep every time the program finishes processing a load block and sound an alarm when completely finished. From the second option menu the user has the choice of returning to the first option menu by pressing ESCAPE or starting the program's calculation subroutines by pressing RETURN.

```
\mbox{UP} ..... Move to next field
  DOWN ..... Move to previous field
  LEFT/RIGHT .... Change field up/down
  F2 ..... Turn sound to ON
  ENTER .... Start with current values
  ESCAPE ... Return to previous screen
Type of inputs (stress or strain) [ Stress ]
Equation
                                [ Morrow's equation ]
Fixed / Varing n' and K'
                               [ Fixed n' and K' ]
Calculation Type
                               [ Load blocks to failure ]
Input file name
                                [ STRESS.DAT ]
Output file name
                                [ OUTPUT.DAT ]
```

Figure 2 Option Menu 2

The other menu used in the program is to facilitate operator entry of a new material. Called by the first option selection menu, and shown in Figure 3, it displays and allows the operator to update the following material properties:

- ullet ultimate strength (S_u)
- yield strength (S_v)
- ullet fatigue yield strength (S_v')
- strength coefficient (K)
- cyclic strength coefficient (K')
- strain hardening exponent (n)
- cyclic strain hardening exponent (n')
- ullet ductility coefficient ($\epsilon_{\mathbf{f}}$)
- ullet fatigue ductility coefficient ($\epsilon_{\mathbf{f}}'$)
- strength coefficient (σ_f)

- fatigue strength coefficient (σ_{f}')
- fatigue strength exponent (b)
- fatigue ductility exponent (c)
- endurance strength (S_f)
- modulus of elasticity (E)

```
UP ..... Move to next field
  DOWN ...... Move to previous field
  LEFT or RIGHT .... Enter a new value
  ENTER ... Return with current values
  ESCAPE .... Quit material data entry
                                                          0 ]
Ultimate Strength
                                  (Su in ksi)
                                  (Sy in ksi)
                                                          0 J
Yield Strength
                                  (Sy' in ksi)
Fatigue Yield Strength
                                                          0 ]
Strength Coeficient
                                  (K in ksi)
                                                          0 ]
                                  (K' in ksi)
                                                          0]
Cyclic Strength Coefficient
                                                     [ 0.00 ]
Strain Hardening Exponent
                                  (n)
Cyclic Strain Hardening Exponent
                                                     [ 0.00 ]
                                  (n')
                                  (epsilon f)
Ductility Coefficient
                                                     [ 0.00 ]
Fatigue Ductility Coefficient
                                  (epsilon f')
                                                     [ 0.00 ]
Strength Coefficient
                                  (sigma f in ksi)
                                                          0 ]
Fatigue Strength Coefficient
                                  (sigma f' in ksi)
                                                          0]
Fatigue strength Exponent
                                  (b)
                                                    [ 0.00 ]
                                                    [ 0.00 ]
Fatigue Ductility Exponent
                                  (c)
Endurance Strength
                                  (Sf in ksi)
                                                          0 ]
                                  (E in ksi)
Modulus of Elasticity
                                                          0 ]
```

Figure 3 Material Entry Menu

Upon exiting this menu, the user is prompted for the newly entered material's name and gives the option of saving the new material in the material data base.

D. LOAD HISTORY INPUT

The load history to be processed/analyzed is read into the program from the operator designated input file. This is accomplished by the subroutine LOADER. Additionally, this subroutine determines the number of loads in the sequence and whether the first increment is increasing or decreasing. The load input file is simply a consecutive list of either stresses or strains, one per line, in a DOS compatible format.

E. CALCULATIONS

The data processing takes place in the subroutine CRUNCHER. In this subroutine the far-field stress or strain load sequence is turned into a sequence of far-field stress or strain changes, according to what was initially read in. If the input file consisted of strain loads, the monotonic stress-strain equation, (Equation (6)) and the hysteresis equation, (Equation (7),) is used to convert strain changes to stress changes. Next using Neuber's rule, (Equation (5),) the far-field stress changes are used to find the local stress changes. The local stress changes and either the mean or maximum stress are then used in one of the three available strain-life equations, (Equations (2) through (4),) to determine the number of cycles to failure at the given load levels. This life is then used in conjunction with Miner's rule, (Equation (1)) to determine how much damage has

accumulated, or how much of the fatigue life was consumed, and added to a running counter. This process is repeated until all the loads are processed, or until failure, which occurs when the damage sums to one.

F. COMPUTATIONAL SUBROUTINES

Equations (2) through (6) can not be solved directly for the needed variables and require an iterative numerical solution. Newton's method of successive approximations was chosen as the simplest and most efficient method for this application. Newton's method is an iterative method which requires the function in question be evaluated at an initial estimate. If the estimate produces excessive error, the function's derivative is evaluated at the estimated value and a new estimate is obtained by subtracting from the old estimate the error at the old estimate divided by the derivative at the old estimate. [Reference 4]

Subroutines EQUATIONS1, EQUATIONS2, EQUATIONS3, EQUATIONS4, and EQUATIONS5 utilize Newton's method to solve equations (2) through (5) and (7). In EQUATIONS2, EQUATIONS3, and EQUATIONS4, which solve the strain-life equations, Newton's method was modified slightly to ensure that variable NNf_i being solved for was never approximated as being negative. (The variable Nnf_i, which is raised to a negative

power, would produce a complex number which the program cannot accept.)

To allow for cycle to cycle variation in K' and n' the functions xxkf and xxnf were created to redefine the values of K' and n' based on the number of elapsed cycles (calculated by the function xxnnfcount).

Since QuickBasic has no built in function for base 10 logarithms, the function LOG10 was incorporated to generate base ten logarithms from natural logarithms with the relationship shown:

$$Log_{10}(x) = \frac{\ln(x)}{\ln(10)}$$
 (8)

[Reference 5].

G. DATA OUTPUT

Depending on the processing option chosen, the output will consist of either a step by step print out of each variable's value for one trip through the input load block, (Figure 4,) and a summary of the chosen options, the number of cycles and load blocks until failure, or just the output summary, (Figure 5). The output is appended to the output file so that any previous data in the file will not be lost.

H. CODE VERIFICATION

To verify the programming code, the FLP was run for several short load histories (approximately 10 cycles). The first test sequences were constant amplitude loading till

```
"Morrow's equation"

" Fixed n' and K' "

"Load blocks to failure"

"input file:","test1"

"output file:","OUTPUT.DAT"

"blocks:",7

"i counter:",2482

"reversal count:",35655

"life factor:",1.000275410409951
```

Figure 4 Sample output summary.

index	Stress	deltaStress	deltasig	siq	siq0	deltaeps	nnf
1	45	45	45.00	45.00	22.50	0.004369	0.15D+09
2	20	25	25.00	20.00	32.50	0.002428	0.16D+09
3	90	70	70.00	90.00	55.00	0.006800	0.66D+05
4	30	60	60.00	30.00	60.00	0.005826	0.14D+06
5	50	20	20.01	50.00	40.00	0.001942	0.18D+09
6	10	40	40.01	9.99	30.00	0.003884	0.17D+09
7	40	30	30.02	40.02	25.00	0.002915	0.14D+09
8	-90	130	130.00	-89.98	-24.98	0.012858	0.18D+05
9	60	150	150.00	60.02	-14.98	0.015193	0.59D+04
10	- 10	70	70.00	-9.98	25.02	0.006800	0.20D+06
11	90	100	100.00	90.02	40.02	0.009748	0.15D+05
12	-40	130	130.00	- 39 . 98	25.02	0.012858	0.58D+04
13	30	70	70.00	30.02	-4.98	0.006800	0.15D+09
14	0	30	30.02	-0.01	15.00	0.002915	0.15D+09
15	60	60	60.00	59.99	29.99	0.005826	0.12D+09
16	10	50	50.01	9.98	34.99	0.004856	0.10D+09
17	30	20	20.01	29.99	19.99	0.001942	0.11D+09
18	- 30	60	60.00	-30.01	-0.01	0.005826	0.11D+09
19	87	117	117.00	86.99	28.49	0.011474	0.91D+04
20	43	44	44.00	42.99	64.99	0.004272	0.14D+09
21	56	13	13.00	55.99	49.49	0.001262	0.11D+09
22	- 76	132	132.00	-76.01	-10.01	0.013078	0.11D+05
23	4	80	80.00	3.99	-36.01	0.007775	0.15D+09
24	- 5	9	9.01	-5.02	-0.52	0.000875	0.17D+09
25	0	5	5.02	-0.01	-2.51	0.000487	0.20D+09

Figure 5 Sample step by step output.

failure and later load sequences were variable amplitude. The identical load sequences processed by hand with an HP-48 hand held calculator capable of solving complex equations numerically. The results were identical to four, usually five

or six, significant figures. This however didn't test the programs calculation of varying strength coefficient and varying strain hardening exponents. To verify that these were being correctly calculated the program was run in the QuickBasic environment before being compiled into an executable, (.EXE) file. When the program is being run in the QuickBasic environment, the operator can pause execution at any time and, using what's referred to as the Immediate window, execute other instructions [Reference 6]. Using this feature and a hand held calculator, it was simple to pause the program at random intervals between 1000 and 500,000 elapsed cycles to ensure n' and K' had correct values.

III. MATERIAL DATA BASE

A. CYCLIC PROPERTIES

In most metals the stress-strain response is altered by repeated loading. Depending on the material and it's initial characteristics (i.e., quenched and tempered, or annealed,) a metal might either cyclically harden, soften, or have a mixed behavior. Typically a material which has a low yield strength relative to it's ultimate tensile strength will undergo strain hardening while a hard material cyclically softens. This is reflected in the difference between a material's monotonic strength coefficient (K) and its cyclic strength coefficient (K') as well as the strain hardening exponent (n) and the cyclic strain hardening exponent (n'). Figure (6) shows the effects of cyclic loading on copper.

Normally, when performing strain-life calculations K' and n' are used in all the stress-strain calculations. For low to medium cycle fatigue, $(10^3 - 10^5 \text{ cycles},)$ the effect of the change in these material properties is undocumented. To account for the dynamic nature of these properties, it was postulated that they could be expressed as a function of the elapsed cycles, allowing their value to be continually updated from cycle to cycle.

Figure 6 Hysteresis response of copper. (From Ref. 1)

B. ARCHIVAL DATA

The program utilizes a separate file MAT.DAT to hold the materials available to the program without manual entry by the operator. Appendix z shows the contents of the file MAT.DAT.

The first entry in the material data base indicates the number of materials in the original data base. This number couldn't be changed without restructuring the data base into a series of records so a second file NEWCOUNT was created just to record the number of new materials that were added to the data base. The number of materials within the data base is needed by the program to allow the option menu to cycle through all the materials.

The material properties used in the data base came from Metal Fatigue in Engineering by H. O. Fuchs [Reference 3].

The data base contains both the SI and British/American values for all properties and when new materials are added to the data base both the SI and British/American values are recorded. For numerous materials Reference 3 doesn't include values for K, K' and n. To get around this potential problem, when any of these properties are missing the subroutine Loadmaterial, which selects the proper material from the data base and initializes the variables in the program to the appropriate material properties, will estimate the value of the missing property using the following relations:

$$K = \frac{\sigma_f}{(\epsilon_f)^n} \qquad K' = \frac{\sigma_f'}{(\epsilon_f')^{n'}} \qquad n = \frac{b}{c}$$
 (9)

[Reference 1].

Review of the selected material's properties is accomplished by pressing F1 while the first option menu is displayed. This activates the display used for entering new materials, which will display the properties of the material that is already loaded. The displayed properties can't be modified to ensure the integrity of the original data base.

IV. LOAD GENERATING PROGRAM LOADGEN

A. LOAD SPECTRUM CONCEPT

In order to evaluate the effect of varying n' and K' on strain-life, a realistic load sequence was desired. Readily available was the load spectrum data representing the g exceedences of a 0.9973 percentile (three sigma) A-6 aircraft, Table I, [Reference 2].

TABLE 1: THREE σ LOAD SPECTRUM

Date of Data	Corrected FLt. Hours	4G PER 1000.0	5G 1000.0	6G 1000.0	7G 1000.0
12/31/89	72.7	165	72	0	0
1/31/90	48.7	186	27	0	Ō
2/28/90	34.4	74	Ō	0	0
3/31/90	16 3	7.4	18	0	0
4/30/90	40.5	234	54	0	0
5/31/90	50.3	90	18	0	10
6/30/90	77.9	32	18	0	0
7/31/90	33.9	42	0	0	0
8/31/90	80.4	127	0	0	0
9/30/90	44.5	32	0	0	0
10/31/90	103.6	90	18	0	0
11/30/90	42.8	111	0	0	0
12/31/90	29.5	27	0	0	0
7/31/91	4.1	106	0	0	0
8/31/91	77.6	58	0	0	0
9/30/91	74.6	42	18	0	0
10/31/91	85.3	260	18	0	0
11/30/91	83.0	228	72	47	0
Totals	1000	1978.0	333.0	47.5	10.2

The number of exceedences for each govel was entered into the program LOADGEN. This program was a select a random number and then pick a corresponding 4g, 5g, 6g, or 7g load. The random number generator returned a number between 0 and 1,

which was compared to the percentage of g occurrences greater than 7, then greater than 6, and so on, until the random number is less than or equal to the percentage of occurrences in excess of a certain g level. The algorithm checks to ensure that all the g loads at that level haven't been depleted and decrements the counter for the respective bin. If all the loads at a particular g level are depleted and a random number was generated picking a depleted g level, then another random number is called until all the exceedences have been picked from the four g levels.

As each random number was generated, and a g level exceedence chosen, the program immediately calls another random number to determine the tenths value of the load to be inserted into the sequence. For example, if a 5g load was picked to be inserted into the sequence, the second random number would determine if it were a value of 5.0, 5.1, 5.2, etc. up to 5.9. The generated values were then sequenced in an output file for temporary storage. With the assumption that the load returned to 1 g at the end of every cycle, a sequence like the one in Figure 7 was generated.

B. A-6 STRESS SEQUENCE GENERATION

After the g sequence was developed, it was converted to a stress sequence for processing by FLP. Since the exact correlation between g load and the stress it produces on the A-6 wasn't known, the standard Navy design criteria was used

Figure 7 Cycle by cycle load application

to calculate the highest acceptable corresponding stress values. The Navy's design criteria is such that the yield stress can't be exceeded at the design g limit, and the ultimate stress can't be exceeded at 1.5 times the design g limit. Since the design g limit of the A-6 is +6.5, in the worst case either a g loading of 6.5 corresponds to the material's yield strength, or a g loading of 9.75 corresponds to the material's ultimate strength. Given both the yield and ultimate strengths of the material, the program selects the limiting case and uses the corresponding g to stress ratio to convert the series of g loadings into a series of stress loadings. Since the g count information only gives maximums

and no minimums, the load profile was assumed to return to 1 g between each of the peaks.

As the file of g loads was transformed into stress loads, the stresses were written sequentially into a file for use by FLP.

V. APPROXIMATION OF K' AND n'

A. EXPERIMENTAL EFFORTS

To account for the cyclic change in K' and n', these values were experimentally determined in test specimens whose life under a given cyclic strain load had already been determined. Specimens made from aluminum 7075-T6, shown in Figure 8, were tested in cyclic strain by LT Byron Smith in an investigation of the effects of means strain on strain life [reference 7]. Under fully reversed strain loading of ±.007 in/in, test specimens were cycled to 10%, 20%, 30%, and 40% of their predetermined total life. These specimens, and two

Figure 8 Fatigue test specimen

specimens without any cyclic preloading, were then subjected to a uniaxial stress-strain test to determine the properties in question.

The testing was performed on the Naval Postgraduate School, Mechanical Engineering Department's MTS machine. Data correlating to load and displacement were recorded continuously throughout the tests. This data was reduced to stress and strain, plotted in Figure 9, and then processed to determine the stress coefficients and strain hardening exponents at the time of testing.

Two methods of determining the properties in question were attempted. In the first the strain hardening exponents (n) were calculated using the following relationship from reference(1):

at necking:
$$n = \ln(1 + e)$$
 (10)

where e is the engineering strain.

Knowing n, K can be determined with the relationship:

$$\sigma = K(\epsilon_p)^n \qquad \longrightarrow \qquad K = \frac{\sigma}{(\epsilon_p)^n} \tag{11}$$

where σ is the true stress and ϵ_p is the true elastic strain. Taking into consideration the following relationships:

$$\epsilon_p = \epsilon_{total} - \epsilon_{\bullet} \tag{12}$$

$$\epsilon_{\rm e} = \frac{\sigma}{E}$$
 (13)

$$\epsilon_{total} = \ln(1 + e)$$
 (14)

$$\sigma = S(1 + e); \tag{15}$$

where ϵ_e is the true elastic strain, and S is the engineering stress, this expression can be formed:

$$K = \frac{S(1 + e)}{\left(\ln(1 + e) - \frac{S(1 + e)}{E}\right)^n}$$
 (16)

The resulting values for n' and K' appear in Table 2.

TABLE 2: DATA REDUCTION RESULTS - METHOD 1

	n	K (ksi)
0% prestrain #1	.160	131
0% prestrain #2	.155	130
10% prestrain	.020	93
20% prestrain	.155	131
30% prestrain	.151	130
40% prestrain	.155	132

The experimentally derived stress coefficient and strain hardening data doesn't lend itself to generating a function based on elapsed cycles or used up strain-life. Looking at more of LT Smith's work with strain fatigue in aluminum 7075-T6, shows a large deviation in the test results for strain life, (Figure 10). Because of the large deviation in the life of a specimen, there are large deviations in specified percentages of the sample's life. This indicates the need to test a large number of samples to get results for K and n of any statistical significance.

Figure 9 Stress-Strain Curves

Figure 10 Strain-Life Deviation

B. ESTIMATION OF K' AND n'

Lacking statistically significant test results, for purposes of exercising this program both the strength coefficient and the strain hardening exponent were postulated to be:

- the monotonic values when less than 1000 cycles had elapsed,
- the cyclic values when more than 500,000 cycles had elapsed, (half the endurance life,) and
- a log-normal function of the number of elapsed cycles when between 1,000 and 500,000.

To calculate these properties between 1000 and 500,000 cycles the following equations were used:

$$n_{vari} = \left(\frac{n' - n}{Log_{10}(500000) - Log_{10}(1000)}\right) (Log_{10}(x) - Log_{10}(1000)) + n$$
(17)

$$K_{vari} = \left(\frac{K' - K}{Log_{10}(500000) - Log_{10}(1000)}\right) \left(Log_{10}(x) - Log_{10}(1000)\right) + K$$
(18)

For aluminum 7075-T6 these equations are plotted in Figure 11.

Figure 11 K' and n' Functions

VI. COMPUTATIONS

A. COMPARISON PROCEDURE

To compare the strain-lives calculated by using the cyclic properties with those obtained by varying the properties, a set of input load files were generated using the three σ limits of g load data for the A-6 and the LOADGEN program. Each file contained approximately 4800 points, representing 1000 hours of flight time. The subroutine BATCH was setup to repeat the strain-life calculation for each of the four load files, using each of the three strain-life equations, and the four following calculation methods:

- fixed n' and fixed K'
- fixed n' and variable K'
- variable n' and fixed K'
- variable n' and variable K'

This amounted to 48 sets of computations, the results of which are shown in Table 3.

B. DISCUSSION OF RESULTS

The data in Table 3 show a reduction in the calculated fatigue life of 15 to 30% when both the strength coefficient and the strain hardening exponent were varied from their monotonic values to their cyclic values. It is also clear

that the strength coefficient has a much greater impact on the fatigue life then does the strain hardening exponent. Variation of the strength coefficient consistently produced a significant drop in the fatigue life, while varying the strain hardening exponent very slightly raised the calculated fatigue life.

All three of the strain-life equations used to make the calculations behaved the same, though it seemed that the respective importance of the strain harding exponent relative to the strength coefficient varied between the equations.

The effect of varying the strength coefficient can be anticipated. From Equation(6), a reduced value of K' translates into greater strain values locally, and greater strain means reduced life. However reduced n' values also mean larger strains and consequent reductions in life.

The effect of varying only the strain hardening could also be anticipated, but it's impact, compared to that of the strength coefficient was unexpected.

It should be noted that these calculations assumed constant values for b and c in Equations (2) through (4), where in reality they would change. However this example has allowed this unique segment of the program to be exercised and to gain some preliminary estimates of the effect varying these parameters has on fatigue life.

TABLE 3: CYCLES TO FAILURE

Equation	Processing Option	Input file:			
		TEST0	TEST1	TEST2	TEST3
Morrow's Equation	Fix n'; Fix K'	50554	49570	49708	50221
	Var n'; Var K'	38723	33665	33661	37899
	Var n'; Fix K'	50783	49737	50000	50453
	Fix n'; Var K'	38723	33665	33661	38169
Smith- Watson- Topper	Fix n'; Fix K'	39018	38404	38543	37899
	Var n'; Var K'	33985	29979	31340	33114
	Var n'; Fix K'	39162	38635	38779	38847
	Fix n'; Var K'	33933	28927	30310	32072
Manson- Halford	Fix n'; Fix K'	47428	46483	46838	47346
	Var n'; Var K'	34516	32166	33661	33729
	Var n'; Fix K'	47587	46924	47320	47429
	Fix n'; Var K'	33985	28927	33661	33729

VII. DISCUSSION/CONCLUSIONS

The FLP originally conceived has been written and appears to function well. It possesses flexibity in the manner in which it performs fatigue life calculations, using any one of three documented strain-life equations which account for mean stress effects. The initial exploration done with it supports the concept that fatigue life, especially in the lower end of the fatigue spectrum, might be better calculated if changes in material properties are accounted for. To do this, however, material properties need to be well defined as functions of elapsed cycles. The algorithms used in the FLP varied only two of the material's properties as a function of elapsed cycles, K' and n'. Other material properties could be varied in addition to the ones currently varied by the FPL. Four candidates are: the fracture strength coefficient $(\sigma_{\mathbf{f}})$, the ductility coefficient (ϵ_f) , the fatigue strength exponent (b) and the fatigue ductility exponent (c). These coefficients have been shown to vary with elapsed cycles as well, and their effect should be explored in future tests and incorporated into FLP.

APPENDIX A FLP PROGRAM LISTING

A. MAIN PROGRAM

```
DEFSNG A-Z
DEFINT I-P
DECLARE SUB BATCH ()
DECLARE SUB LOADER ()
DECLARE SUB CRUNCHER ()
DECLARE SUB EQUATIONS1 ()
DECLARE SUB EQUATIONS2 ()
DECLARE SUB EQUATIONS3 ()
DECLARE SUB EQUATIONS4 ()
DECLARE SUB EQUATIONS5 ()
DECLARE SUB OPTMENU1 ()
DECLARE SUB OPTMENU2 ()
DECLARE SUB MATMENU ()
DECLARE SUB UPDATEMENU ()
DECLARE SUB UPDATEMENU2 ()
DECLARE SUB Loadmaterial (index)
DECLARE SUB NEWMAT (Ky)
DECLARE SUB OUTPUTER ()
DECLARE SUB HEADER ()
DECLARE SUB DATADUMP ()
DECLARE SUB PetersonKf ()
DECLARE SUB NeuberKf ()
DECLARE SUB GetConfig ()
DECLARE SUB TYPIN (cstring$, valu)
DECLARE SUB TYPINSTRING (cstring$, stringname$)
DECLARE SUB Klaxon (Hi%, low%)
DECLARE FUNCTION xxnf! ()
DECLARE FUNCTION xxKf! ()
DECLARE FUNCTION xxNNfcount& ()
DECLARE FUNCTION Rotated (Lower, Upper AS INTEGER, present, Inc)
DECLARE FUNCTION LOGIO! (value!)
Main Program
REM $DYNAMIC
' Constants for best available screen mode
CONST VGA = 12
CONST MCGA = 13
CONST EGA256 = 9
CONST EGA64 = 8
CONST MONO = 10
CONST HERC = 3
CONST CGA = 1
```

```
' User-defined type to hold information about the mode
TYPE Config
            AS INTEGER
   Scrn
   Colors
            AS INTEGER
            AS INTEGER
   Atribs
             AS INTEGER
   XPix
   YPix
            AS INTEGER
   TCOL
            AS INTEGER
   TROW
             AS INTEGER
END TYPE
DIM VC AS Config
            variables shared throughout the program
COMMON SHARED YD, i, top, Kt AS SINGLE, Ktf AS SINGLE, option4 AS STRING
COMMON SHARED matcount, matindex, matname AS STRING, Su, Syf, K AS SINGLE
COMMON SHARED Kf AS SINGLE, n AS SINGLE, nf AS SINGLE, equationname AS STRING
COMMON SHARED epsf, epsff, sigf, sigff, b, c, Sf, SfSu, E, newstuff
COMMON SHARED flag1 AS INTEGER, flag2 AS INTEGER, flag3 AS INTEGER
COMMON SHARED flag4 AS INTEGER, flag5 AS STRING, batchno AS INTEGER
COMMON SHARED nKtype AS STRING, calctype AS STRING, lgNNfcount AS SINGLE COMMON SHARED usedlife AS DOUBLE, block AS INTEGER, lasti AS INTEGER
COMMON SHARED NNfcount AS LONG, xKf AS SINGLE, xnf AS SINGLE
COMMON SHARED inputfile AS STRING, outputfile AS STRING, sigmax AS SINGLE
COMMON SHARED laststress AS SINGLE, strainmax AS SINGLE, lasteps AS SINGLE
COMMON SHARED lastsig AS SINGLE
size = 5000
DIM SHARED stress(size) AS SINGLE, strain(size), sig(size) AS SINGLE
DIM SHARED deltaeps(size) AS SINGLE, NNf(size) AS DOUBLE, sig0(size) DIM SHARED deltaStress(size) AS SINGLE, deltastrain(size) AS SINGLE
DIM SHARED deltasig(size), eps(size)
'User-defined type to hold information about the selected options (menul)
TYPE Options1
   units
             AS STRING * 4
   material AS INTEGER
             AS SINGLE
   Κt
   Ktf
              AS INTEGER
   option5
            AS INTEGER
END TYPE
DIM Menu AS Options1
' User-defined type to hold information about the selected options (menu2)
TYPE Options2
              AS STRING * 6
   inputs
   equation AS INTEGER
                                   'nKtype selection
   option3
            AS INTEGER
   option4
              AS INTEGER
                                   'calculation type
END TYPE
DIM menu2 AS Options2
```

' Error variables to check screen type
DIM InitRows AS INTEGER, BestMode AS INTEGER, Available AS STRING

```
' Initialize variables
Menu.units = "Brit"
Menu.material = 21
Menu.Kt = 1
Menu.Ktf = 1
Menu.option5 = 1
option4 = "Manually Entered "
Kt = 1
Ktf = 0
menu2.inputs = "Stress"
menu2.equation = 1
menu2.option3 = 1
menu2.option4 = 1
equationname = "Morrow's equation"
nKtype = " Fixed n' and K' "
calctype = "Load blocks to failure"
inputfile = "STRESS.DAT"
outputfile = "OUTPUT.DAT"
flag2 = 1
flag3 = 0
flag4 = 0
flag5 = "OFF" '
                    initialises sound on
batchno = 0
sigmax = 0
strainmax = 0
laststress = 0
lastsig = 0
lasteps = 0
     Get best configuration and set initial graphics mode to it
GetConfig
VC.Scrn = BestMode
DO
      ' endless do loop for main program (exited from menu 1)
          Selecti n of material/constants
   IF flag4 = 0 THEN
      DO
         CALL OPTMENU1
         CALL OPTMENU2
       LOOP UNTIL flag2 = 1
    END IF
   IF menu2.option4 = 3 THEN
      batchno = batchno + 1
       BATCH
   END IF
   CALL LOADER
   CALL CRUNCHER
  CALL OUTPUTER
```

```
IF flag4 = 0 THEN
       IF flag5 = "OFF" THEN PRINT "Finished Processing....press any key"
       IF flag5 = "OFF" THEN CALL Klaxon(987, 329)
       CLS
       PRINT USING "Finished Processing Batch ##"; batchno
    END IF
   sigmax = 0
   strainmax = 0
   laststress = 0
   lasteps = 0
   lastsig = 0
 LOOP UNTIL cowscomehome
END
' Error trap to make program screen independent
VideoErr:
   SELECT CASE BestMode
                          ' Fall through until something works
      CASE VGA
         BestMode = MCGA
         Available = "12BD"
      CASE MCGA
         BestMode = EGA256
         Available = "12789"
      CASE EGA256
         BestMode = CGA
         Available = "12"
      CASE CGA
         BestMode = MONO
         Available = "A"
      CASE MONO
         BestMode = HERC
         Available = "3"
      CASE ELSE
         PRINT "Sorry. Graphics not available. "
         END
   END SELECT
   RESUME
' Trap to detect 64K EGA
EGAErr:
  BestMode = EGA64
  Available = "12789"
  RESUME NEXT
' Trap to detect insufficient memory
MemErr:
  LOCATE 22, 1
  PRINT "Out of memory"
  RESUME NEXT
```

B. SUBROUTINE BATCH

```
REM SSTATIC
Subroutine to access a file for repeated runs
     (currently set to process 4 file, with 3 eqns, 4 methods
 SUB BATCH
SHARED menu2 AS Options2
IF batchno = 1 THEN
   inputfile = "testaa"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 2 THEN
   inputfile = "testaa"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 3 THEN
   inputfile = "testaa"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 1
   equationname = "Morrow's Equation"
 ELSEIF batchno = 4 THEN
   inputfile = "testaa"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 1
   equationname = "Morrow's Equation"
 ELSEIF batchno = 5 THEN
   inputfile = "testbb"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 1
   equationname = "Morrow's Equation"
```

```
ELSEIF batchno = 6 THEN
   inputfile = "testbb"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 7 THEN
   inputfile = "testbb"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 8 THEN
   inputfile = "testbb"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 9 THEN
   inputfile = "testcc"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 10 THEN
   inputfile = "testcc"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 11 THEN
   inputfile = "testcc"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 12 THEN
   inputfile = "testcc"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 13 THEN
   inputfile = "testdd"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
  menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 14 THEN
   inputfile = "testdd"
  nKtype = "Variable n' and K'"
  menu2.option3 = 2
  menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 15 THEN
  inputfile = "testdd"
  nKtype = "Variable n' and fixed K' "
  menu2.option3 \approx 3
  menu2.equation = 1
  equationname = "Morrow's Equation"
```

```
ELSEIF batchno = 16 THEN
   inputfile = "testdd"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 1
   equationname = "Morrow's Equation"
ELSEIF batchno = 17 THEN
   inputfile = "testaa"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   monu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 18 THEN
   inputfile = "testaa"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 19 THEN
   inputfile = "testaa"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 20 THEN
   inputfile = "testaa"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 21 THEN
   inputfile = "testbb"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 22 THEN
   inputfile = "testbb"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 23 THEN
   inputfile = "testbb"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 24 THEN
   inputfile = "testbb"
   nKtype = "Fixed n' and variable K'"
  menu2.option3 = 4
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 25 THEN
   inputfile = "testcc"
   nKtype = " Fixed n' and K' "
  menu2.option3 = 1
  menu2.equation = 2
   equationname = "Smith-Watson-Topper"
```

```
ELSEIF batchno = 26 THEN
   inputfile = "testcc"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 27 THEN
   inputfile = "testcc"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 28 THEN
   inputfile = "testcc"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 29 THEN
   inputfile = "testdd"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 2
   menu2.equation = 1
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 30 THEN
   inputfile = "testdd"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
  menu2.equation \approx 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 31 THEN
   inputfile = "testdd"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
  menu2.equation = 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 32 THEN
   inputfile = "testdd"
  nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
  menu2.equation \approx 2
   equationname = "Smith-Watson-Topper"
ELSEIF batchno = 33 THEN
   inputfile = "testaa"
  nKtype = " Fixed n' and K' "
  menu2.option3 = 1
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 34 THEN
   inputfile = "testaa"
   nKtype = "Variable n' and K'"
  menu2.option3 = 2
  menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 35 THEN
   inputfile = "testaa"
  nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
  menu2.equation = 3
   equationname = "Manson-Halford"
```

```
ELSEIF batchno = 36 THEN
   inputfile = "testaa"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 37 THEN
   inputfile = "testbb"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 3
   equationname - "Manson-Halford"
ELSEIF batchno = 38 THEN
   inputfile = "testbb"
nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 3
   equationname = "Manson-Halforg"
ELSEIF batchno = 39 THEN
   inputfile = "testbb"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 40 THEN
   inputfile = "testbb"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 41 THEN
   inputfile = "testcc"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 42 THEN
   inputfile = "testcc"
   nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 43 THEN
   inputfile = "testcc"
   nKtype = "Variable n' and fixed K' "
   menu2.option3 = 3
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 44 THEN
   inputfile = "testcc"
   nKtype = "Fixed n' and variable K'"
   menu2.option3 = 4
   menu2.equation = 3
   equationname = "Manson-Halford"
ELSEIF batchno = 45 THEN
   inputfile = "testdd"
   nKtype = " Fixed n' and K' "
   menu2.option3 = 1
   menu2.equation = 3
   equationname = "Manson-Halford"
```

```
ELSEIF batchno = 46 THEN
    inputfile = "testdd"
    nKtype = "Variable n' and K'"
   menu2.option3 = 2
   menu2.equation = 3
    equationname = "Manson-Halford"
 ELSEIF batchno = 47 THEN
   inputfile = "testdd"
    nKtype = "Variable n' and fixed K' "
    menu2.option3 = 3
   menu2.equation = 3
    equationname = "Manson-Halford"
 ELSEIF batchno = 48 THEN
    inputfile = "testdd"
    nKtype = "Fixed n' and variable K'"
    menu2.option3 = 4
    menu2.equation = 3
    equationname = "Manson-Halford"
    flag4 = 0
END IF
END SUB
```

C. SUBROUTINE CRUNCHER

```
REM $DYNAMIC
' subroutine to calculate Strian-Life using the various methods
SUB CRUNCHER
DIM lastload AS SINGLE
SHARED menu2 AS Options2
OPEN outputfile FOR APPEND AS #7
        'initialize variables
usedlife = 0
block = -1
lastload = 0
        ' loop until life is used up if single block option not chosen
  block = block + 1
                 'calculate delta loads and print output header if
  IF block = 0 THEN
                  appropriate
   IF menu2.inputs = "Stress" THEN
                    calculation of farfield deltastress array
       FOR ii = 1 TO top
          deltaStress(ii) = ABS(stress(ii) - lastload)
          lastload = stress(ii)
        NEXT ii
     ELSE
```

```
calculation of far field deltastrain array
       FOR ii = 1 TO top
           deltastrain(ii) = ABS(strain(ii) - lastload)
           lastload = strain(ii)
        NEXT ii
   END IF
END IF
                    load blocks processed
  FOR i = 1 TO top
                                set properties based on elapsed cycles
          NNfcount = xxNNfcount
          lgNNfcount = LOG10(CSNG(NNfcount))
          xKf = xxKf
          xnf = xxnf
                                turn farfield strains into stresses
          IF menu2.inputs = "Strain" THEN CALL EQUATIONS5
                            find local Stress associated with farfield stress
          CALL EQUATIONS1
                                calcalate mean local stress
          sig(i) = lastsig + ((-1) ^ (flag1 + i)) * deltasig(i)
          sig0(i) = (lastsig + sig(i)) / 2
          lastsig = sig(i)
                           ' finding epsilon and delta epsilon
          IF sig(i) > sigmax THEN
                mopnotonic equation to find local strains eps(i) = sig(i) / E + (sig(i) / (xKf)) ^ (1 / xnf)
                deltaeps(i) = ABS(eps(i) - lasteps)
                 lasteps = eps(i)
                sigmax = sig(i)
             ELSE
                                hysteresis equation to find local strains
                deltaeps(i) = deltasig(i) / E + 2 * (deltasig(i) / (2 * xKf))
                ^ (1 / xnf)
eps(i) = lasteps + ((-1) ^ (flag1 + i)) * deltaeps(i)
                lasteps = eps(i)
           END IF
                                 pick between various strain-life eqns
          SELECT CASE menu2.equation
               CASE 1
                                      ' Morrow's equation
                CALL EQUATIONS2
               CASE 2
                                      ' Smith Watson Topper
                CALL EQUATIONS3
               CASE 3
                                      ' Manson Halford
                CALL EQUATIONS4
               CASE ELSE
           END SELECT
                                 print running output to file
```

IF menu2.option4 = 2 THEN DATADUMP

D. SUBROUTINE DATADUMP

END SUB

```
REM $STATIC
' subroutine to write output data
SUB DATADUMP
SHARED menu2 AS Options2
       IF menu2.inputs = "Stress" THEN
                             ### ###.## ###### #.##### #.## ###.##
####.## #.###### #.###### #.##^^^^"; i;
            PRINT #7, USING " ###
                             stress(i); deltaStress(i); deltasig(i); sig(i);
                             sig0(i); deltaeps(i); eps(i); NNf(i)
         ELSE
                            ### #.### #.### ###### ###.## ###.##
####.## #.###### #.###### #.##^^^^"; i;
strain(i): doltanterin():
            PRINT #7, USING " ### #.### #.###
                             strain(i); deltastrain(i); deltaStress(i);
                             deltasig(i); sig(i); sig0(i); deltaeps(i);
                             eps(i); NNf(i)
        END IF
```

E. SUBROUTINE EQUATIONS1

```
subroutine to find delta sigma using Newton's method
                (based on Neuber's Relation)
SUB EQUATIONS1
DIM Yprime AS DOUBLE
deltasiq(i) = 1
loopcount = 0
   loopcount = loopcount + 1
  Y = deltasig(i) * (deltasig(i) / (2 * E) + (deltasig(i) / (2 * xKf))

^ (1 / xnf)) - (Ktf ^ 2) * deltaStress(i) * (deltaStress(i) / (2 * E)

+ (deltaStress(i) / (2 * xKf)) ^ (1 / xnf))
   IF ABS(Y) > .0000001 THEN
      Yprime = deltasig(i) / E + ((xnf + 1) / xnf) * (deltasig(i) / (2 * xKf))
                 (1 / xnf)
      deltasig(i) = deltasig(i) - Y / Yprime
    END IF
LOOP UNTIL (ABS(Y) \leftarrow .0000001) OR (loopcount = 10000)
END SUB
```

F. SUBROUTINE EQUATIONS2

```
' subroutine to evaluate Morrow's Strain-Life equation
SUB EQUATIONS2
REM SDYNAMIC
DIM Yprime AS DOUBLE, Y AS DOUBLE, loopcount AS LONG
NNf(i) = 10000
loopcount = 0
DO
  loopcount = loopcount + 1
  Y = -deltaeps(i) / 2 + ((sigff - sig0(i)) / E) * (2 * NNf(i)) ^ b + epsff * (2 * NNf(i)) ^ c
  IF ABS(Y) > .0000000001# THEN
      Yprime = (b * (sigff - sig0(i)) / E) * (2 ^ b) * (NNf(i)) ^ (b - 1) + c 
 * epsff * (2 ^ c) * (NNf(i)) ^ (c - 1)
        (Y / Yprime < NNf(i)) THEN
           NNf(i) = NNf(i) - Y / Yprime
       ELSE
          NNf(i) = NNf(i) / 2
       END IF
    END IF
```

G. SUBROUTINE EQUATIONS3

```
REM $STATIC
' subroutine to evaluate Smith Watson Topper Strain-Life equation
SUB EQUATIONS3
REM $DYNAMIC
DIM Yprime AS DOUBLE
NNf(i) = 100
loopcount = 0
DO
  loopcount = loopcount + 1
  Y = -(sig0(i) + deltasig(i) / 2) * (deltaeps(i) / 2) + ((sigff ^ 2) / E) * (2)
       * NNf(i)) ^ (2 * b) + sigff * epsff * (2 * NNf(i))
  IF (Y / Yprime < NNf(i)) THEN
        NNf(i) = NNf(i) - Y / Yprime * .5
        NNf(i) \approx NNf(i) / 2.5
      END IF
   END IF
LOOP UNTIL (ABS(Y) <= .0000000001#) OR (NNf(i) > 100000000) OR (loopcount =
10000)
usedlife = usedlife + 1 / NNf(i)
IF loopcount = 10000 THEN PRINT "*"
                           'indication of convergence dificulties
END SUB
```

H. SUBROUTINE EQUATIONS4

```
' subroutine to evaluate Manson-Halford's Strain-Life equation
SUB EQUATIONS4
REM $DYNAMIC
DIM Yprime AS DOUBLE
NNf(i) = 100
loopcount = 0
DO
   loopcount = loopcount + 1
  Y = -deltaeps(i) / 2 + ((sigff - sig0(i)) / E) * (2 * NNf(i)) ^ b + epsff * ((sigff - sig0(i)) / sigff) ^ (b / c) * (2 * NNf(i)) ^ c
   IF ABS(Y) > .0000000001# THEN
      Yprime = (b * (sigff - sig0(i)) / E) * (2 ^ b) * NNf(i) ^ (b - 1) + c *
               epsff * ((sigff - sig0(i)) / sigff) ^ (b / c) * (2 ^ c) * NNf(i)
                 (c - 1)
      IF (Y / Yprime < NNf(i)) THEN</pre>
           NNf(i) = NNf(i) - Y / Yprime * .5
          NNf(i) = NNf(i) / 2.5
        END IF
    END IF
LOOP UNTIL (ABS(Y) <=.0000000001#) OR (NNf(i) > 100000000) OR (loopcount=10000)
usedlife = usedlife + 1 / NNf(i)
IF loopcount = 10000 THEN PRINT "*"
                                   'indication of convergence dificulties
END SUB
```

(1) NO.

I. SUBROUTINE EQUATIONS5

```
IF ABS(Y) > .0001 THEN
         Yprime = 1 / E + (1 / (2 * xKf)) ^ (1 / xnf) * (2 / xnf) * deltaStress ^ (1 / xnf - 1)
         deltaStress(i) = deltaStress(i) - Y / Yprime
      END IF
  LOOP UNTIL (ABS(Y) <= .0001) OR (loopcount = 1000)
                             calcalate far field stress from change in stress
           stress(i) = laststress + ((-1) ^ (flag1 + i)) * deltaStress(1)
           laststress = stress(i)
ELSE
 DO
     loopcount = loopcount + 1
     Y = -strain(i) + stress(i) / E + (stress / xKf) ^ (1 / xnf)
     IF ABS(Y) > .0001 THEN
          Yprime = 1 / E + (1 / (xKf)) ^ (1 / xnf) * (1 / xnf) * stress ^ (1)
                    / xnf - 1)
          stress(i) = stress(i) - Y / Yprime
       END IF
    LOOP UNTIL (ABS(Y) <= .0001) OR (loopcount = 1000)
                             ' cal. farfield stress change and reset strainmax
      strainmax = strain(i)
      deltaStress(i) = ABS(stress(i) - laststress)
      laststress = stress(i)
  END IF
```

END SUB

J. SUBROUTINE GetConfig

```
DEFSNG I-P
Get the starting number of lines and the video adapter.
 SUB GetConfig STATIC
SHARED InitRows AS INTEGER, BestMode AS INTEGER, Available AS STRING
  ' Assume 50 line display and fall through error
  ' until we get the actual number
  InitRows = 50
  ON ERROR GOTO Rowerr
  LOCATE InitRows, 1
  ' Assume best possible screen mode
  BestMode = VGA
  Available = "12789BCD"
  ON ERROR GOTO VideoErr
  ' Fall through error trap until a mode works
  SCREEN BestMode
  ' If EGA, then check pages to see whether more than 64K
  ON ERROR GOTO EGAETT
  IF BestMode = EGA256 THEN SCREEN 8, , 1
```

ON ERROR GOTO 0

' Reset text mode SCREEN 0, , 0 WIDTH 80, 25

END SUB

K. SUBROUTINE HEADER

DEFINT I-P ' subroutine to an appropriate output header SUB HEADER SHARED menu2 AS Options2 IF menu2.inputs = "Stress" THEN PRINT #7, "index Stress deltaStress deltasig sig sig0 deltaeps eps NNf " ELSE PRINT #7, "index strain dstrn deltaStress deltasig sig sig0 NNf " deltaeps eps END IF END SUB

L. SUBROUTINE Klaxon

M. SUBROUTINE LOADER

```
REM $DYNAMIC
DEFSNG H-P
subroutine to read in the array of loads from the file "STRESS.DAT"
      or "STRAIN.DAT" as appropriate
      also -- "top" is set to the highest index in the load array and
          -- "flag1" is set to indicate if the loads are initially
                      increasing or decreasing
<sup>*</sup>
SUB LOADER
SHARED menu2 AS Options2
OPEN inputfile FOR INPUT AS #10
j = 1
IF menu2.inputs = "Stress" THEN
DO UNTIL EOF(10)
      INPUT #10, stress(j)
      j = j + 1
    LOOP
                set "top" to the number of loads:
    top = j - 1
                       IF stress(1) > 0 THEN
        flag1 = 1
        flag1 = 0
     END IF
 ELSE
    DO UNTIL EOF(10)
      INPUT #10, strain(j)
      j = j + 1
    LOOP
                set "top" to the number of loads:
    top = j - 1
                       set "flag1":
                                    (same as above)
    IF strain(1) > 0 THEN
        flag1 = 1
     ELSE
        flag1 = 0
    END IF
END IF
CLOSE #10
END SUB
```

N. SUBROUTINE Loadmaterial

```
REM $STATIC
DEFINT I-P
finds the selected material in the data base and loads the
      material values for the selected material
      also calculates any critical missing values it can
SUB Loadmaterial (index)
'OPEN "A:\MAT.DAT" FOR INPUT AS #3
'OPEN "B:\MAT.DAT" FOR INPUT AS #3
OPEN "MAT.DAT" FOR INPUT AS #3
INPUT #3, count
DO UNTIL index = matindex
   INPUT #3, matindex, matname$, Su, Sy, Syf, K, Kf, n, nf, epsf, epsff, sigf,
sigff, b, c, Sf, SfSu, E
LOOP
CLOSE #3
IF n = 0 AND b <> 0 AND c <> 0 THEN n = b / c
IF nf = 0 AND b <> 0 AND c <> 0 THEN nf = b / c
IF K = 0 AND n <> 0 AND epsf <> 0 THEN K = sigf / (epsf ^ n)
IF Kf = 0 AND nf <> 0 AND epsff <> 0 THEN Kf = sigff / (epsff ^ nf)
END SUB
```

O. FUNCTION LOG10

```
' Returns the base 10 logarithm for the specified value
' END FUNCTION LOG10! (value)

LOG10 = LOG(value) / LOG(10)

END FUNCTION
```

P. SUBROUTINE MATMENU

```
subroutine to update the screen when entering or viewing materials
        in the materials database
SUB MATMENU
CONST ENTER = 13, ESCAPE = 27
CONST DOWNARROW = 80, UPARROW = 72, LEFTARROW = 75, RIGHTARROW = 77
CONST COL1 = 10, COL2 = 50, ROW = 7
CONST COL3 = 7, COL4 = 62
CONST Fields = 14
SHARED Menu AS Options1
DIM forceunit AS STRING, Fld AS INTEGER
CLS
IF flag3 = 0 THEN
   ' Display key instructions
  LOCATE 1, COL1
  PRINT "UP ..... Move to next field"
  LOCATE 2, COL1
  PRINT "DOWN ...... Move to previous field"
  LOCATE 3, COL1
  PRINT "LEFT or RIGHT .... Enter a new value"
  LOCATE 4, COL1
  PRINT "ENTER ... Return with current values"
  LOCATE 5, COL1
  PRINT "ESCAPE .... Quit material data entry"
      'display material's name at top of screen
  LOCATE 2, COL1
  PRINT "ESCAPE ....to return to previous previous menu"
  LOCATE 5, COL1
  PRINT USING "Data base parameters for: &"; matname
END IF
IF (Menu.material <= 51) THEN</pre>
    forceunit = "ksi)"
 ELSE
    forceunit = "MPa)"
 END IF
  ' Display fields
  LOCATE ROW, COL3: PRINT "Ultimate Strength
                                                         (Su in ";
                                                         forceunit
  LOCATE ROW, COL4: PRINT USING "[ #### ] "; Su;
  LOCATE ROW + 1, COL3: PRINT "Yield Strength
                                                            (Sy in ";
                                                         forceunit;
  LOCATE ROW + 1, COL4: PRINT USING "[ #### ] "; Sy;
  LOCATE ROW + 2, COL3: PRINT "Fatigue Yield Strength
                                                            (Sy' in ";
                                                         forceunit;
  LOCATE ROW + 2, COL4: PRINT USING "[ #### ] "; Syf;
```

```
LOCATE ROW + 3, COL3: PRINT "Strength Coeficient
                                                                   (K in ";
                                                                 forceunit;
LOCATE ROW + 3, COL4: PRINT USING "[ #### ] "; K;
LOCATE ROW + 4, COL3: PRINT "Cyclic Strength Coefficient
                                                                  (K' in ";
                                                                forceunit;
LOCATE ROW + 4, COL4: PRINT USING "[ #### ] "; Kf;
LOCATE ROW + 5, COL3: PRINT "Strain Hardening Exponent LOCATE ROW + 5, COL4: PRINT USING "[ #.## ] "; n;
                                                                  (n)";
LOCATE ROW + 6, COL3: PRINT "Cyclic Strain Hardening Exponent (n')";
LOCATE ROW + 6, COL4: PRINT USING "[ #.## ]"; nf;
LOCATE ROW + 7, COL3: PRINT "Ductility Coefficient
                                                                (epsilon f)";
LOCATE ROW + 7, COL4: PRINT USING "[ #.## ] "; epsf;
                                                               (epsilon f')";
LOCATE ROW + 8, COL3: PRINT "Fatigue Ductility Coefficient
LOCATE ROW + 8, COL4: PRINT USING "[ #.## ]"; epsff;
LOCATE ROW + 9, COL3: PRINT "Strength Coefficient
                                                                (sigma f in ";
                                                                 forceunit
LOCATE ROW + 9, COL4: PRINT USING "[ #### ]"; sigf;
LOCATE ROW + 10, COL3: PRINT "Fatigue Strength Coefficient
                                                               (sigma f' in ";
                                                                 forceunit
LOCATE ROW + 10, COL4: PRINT USING "[ #### ]"; sigff;
LOCATE ROW + 11, COL3: PRINT "Fatigue strength Exponent
                                                                    (b) ":
LOCATE ROW + 11, COL4 - 1: PRINT USING "[ ##.## ]"; b;
LOCATE ROW + 12, COL3: PRINT "Fatigue Ductility Exponent
                                                                    (c)";
LOCATE ROW + 12, COL4 - 1: PRINT USING "[ ##.## ]"; c;
                                                                    (Sf in ";
LOCATE ROW + 13, COL3: PRINT "Endurance Strength
                                                                   forceunit
LOCATE ROW + 13, COL4 - 1: PRINT USING "[ ##### ] "; Sf;
                                                                   (E in ";
LOCATE ROW + 14, COL3: PRINT "Modulus of Elasticity
                                                                   forceunit
LOCATE ROW + 14, COL4 - 1: PRINT USING "[ ##### ] "; E;
```

END SUB

Q. SUBROUTINE NeuberKf

END SUB

R. SUBROUTINE NEWMAT

```
subroutine to manually enter material constants and
     enter new materials into the materials database
<sup>*</sup>
SUB NEWMAT (Ky)
CONST ENTER = 13, ESCAPE = 27
CONST DOWNARROW = 80, UPARROW = 72, LEFTARROW = 75, RIGHTARROW = 77
CONST COL1 = 10, COL2 = 50, ROW = 7
CONST COL3 = 7, COL4 = 62
CONST Fields = 14
  conversion constant from "ksi" to "MPa"
CONST ab \approx 6.89476
SHARED Menu AS Options1, save$
DIM forceunit AS STRING, Fld AS INTEGER
IF (Menu.material = 1) THEN
   forceunit = "ksi)"
 ELSE
    forceunit = "MPa)"
END IF
CALL MATMENU
     Update field values and position based on keystrokes
DO
      Put cursor on field
  LOCATE ROW + Fld, COL4 + 2
```

```
Get a key and strip null off if it's an extended code
DO
  Kev$ = INKEY$
LOOP WHILE Key$ = ""
Ky = ASC(RIGHT\$(Key\$, 1))
  SELECT CASE Ky
     CASE ENTER
         ' Chech for all appropriate data parameters
              before allowing return to main option menu
         IF b = 0 OR c = 0 OR sigff = 0 OR epsff THEN
         LOCATE 23, 10: PRINT "Insufficient material parameters were entered"
        END IF
     CASE UPARROW, DOWNARROW
         ' Adjust field location
         IF Ky = DOWNARROW THEN Inc = 1 ELSE Inc = -1
        Fld = Rotated(0, Fields, Fld, Inc)
     CASE RIGHTARROW, LEFTARROW
         ' Adjust field value
         IF Ky = RIGHTARROW THEN Inc = 1 ELSE Inc = -1
        SELECT CASE Fld
            CASE 0
               ' Ultimate Strength
               CALL TYPIN("Enter Ultimate Strength (Su)", Su)
               CALL MATMENU
            CASE 1
               ' Yield Strength
               CALL TYPIN("Enter Yield Strength (Sy)", Sy)
               CALL MATMENU
           CASE 2
               ' Fatigue Yield Strength
               CALL TYPIN("Enter Fatigue Yield Strength (Sy')", Syf)
               CALL MATMENU
           CASE 3
               ' Strength Coeficient
               CALL TYPIN("Enter Strength Coeficient (K)", K)
              CALL MATMENU
           CASE 4
                Cyclic Strength Coeficient
               CALL TYPIN("Enter Cyclic Strength Coeficient (K')", Kf)
              CALL MATMENU
            CASE 5
               ' Cyclic Strength Coeficient
               CALL TYPIN("Strian Hardening Exponent (n)", n)
              CALL MATMENU
           CASE 6
               ' Cyclic Strian Hardening Exponent
              CALL TYPIN("Cyclic Strian Hardening Exponent
                                                             (n')", nf)
              CALL MATMENU
```

```
' Ductility Coefficient (epsilon f)
                  CALL TYPIN("Ductility Coefficient (epsilon f)", epsf)
                  CALL MATMENU
               CASE 8
                  ' Fatigue Ductility Coefficient (epsilon f')
                  CALL TYPIN("Fatigue Ductility Coefficient (epsilon f')",
                               epsff)
                  CALL MATMENU
               CASE 9
                  ' Strength Coefficient (sigma f)
                  CALL TYPIN("Strength Coefficient (sigma f)", sigf)
                  CALL MATMENU
               CASE 10
                  ' Fatigue Strength Coefficient (sigma f')
                  CALL TYPIN("Fatigue Strength Coefficient (sigma f')", sigff)
                  CALL MATMENU
               CASE 11
                  ' Fatigue Strength Exponent (b)
                  CALL TYPIN("Fatigue Strength Exponent (b)", b)
                  CALL MATMENU
               CASE 12
                  ' Fatigue Ductility Exponent
                  CALL TYPIN("Fatigue Ductility Exponent (c)", c)
                  CALL MATMENU
               CASE 13
                   ' Endurance Strength (Sf)
                  CALL TYPIN("Endurance Strength (Sf)", Sf)
                  CALL MATMENU
               CASE 14
                  ' Modulus of Elasticity (E)
                  CALL TYPIN("Modulus of Elasticity (E)", E)
                  CALL MATMENU
               CASE ELSE
            END SELECT
         CASE ELSE
      END SELECT
   ' exit do loop and continue with subroutine if ENTER
   LOOP UNTIL (Ky = ENTER OR Ky \approx ESC)
LOCATE 13, 5: PRINT "Enter Material's Name (up to 30 charactors): "
LOCATE 13, 52: INPUT matname$
LOCATE 15, 5: PRINT "Save this material in material data base (Y/N): "
LOCATE 15, 54: INPUT save$
```

CASE 7

CLS

```
' progam segment to save new materials in the material data base
IF save$ = "Y" OR save$ = "y" THEN
    'OPEN "A:\MAT.DAT" FOR APPEND AS #3
    'OPEN "B:\MAT.DAT" FOR APPEND AS #3
    OPEN "MAT.DAT" FOR APPEND AS #3
    matcount = matcount + 1
    IF forceunit = "ksi) " THEN
        matindex = matcount
        WRITE #3, matindex, matname$, Su, Sy, Syf, K, Kf, n, nf, epsf, epsff,
                 sigf, sigff, b, c, Sf, SfSu, E
        WRITE #3, matindex + 50, matname$, Su * ab, Sy * ab, Syf * ab, K * ab,
                 Kf * ab, n, nf, epsf, epsff, sigf * ab, sigff * ab, b, c, Sf
* ab, SfSu, E * ab
      ELSE
        matindex = matcount + 50
        WRITE #3, matindex, matname$, Su, Sy, Syf, K, Kf, n, nf, epsf, epsff,
                 sigf, sigff, b, c, Sf, SfSu, E
        WRITE #3, matindex - 50, matname$, Su / ab, Sy / ab, Syf / ab, K / ab,
                 Kf / ab, n, nf, epsf, epsff, sigf / ab, sigff / ab, b, c, Sf
                 / ab, SfSu, E / ab
      END IF
    CLOSE #3
    'OPEN "A:\NEWCOUNT.DAT" FOR OUTPUT AS #4
    'OPEN "B:\NEWCOUNT DAT" FOR OUTPUT AS #4
    OPEN "NEWCOUNT.DAT" FOR OUTPUT AS #4
    newstuff = newstuff + 1
    WRITE #4, newstuff
    CLOSE #4
 END IF
CLS
CALL UPDATEMENU
Ky = 0
END SUB
S.
    SUBROUTINE OPTMENU1
REM SDYNAMIC
Define/swtich the user selectable functions for the material and
           stress concentration factors
SUB OPTMENU1 STATIC
SHARED VC AS Config, Menu AS Options1, Available AS STRING, Fields AS INTEGER
SHARED Fld AS INTEGER
```

CONST DOWNARROW = 80, UPARROW = 72, LEFTARROW = 75, RIGHTARROW = 77

' Constants for key codes and column positions

CONST ENTER \approx 13, ESCAPE = 27, F1 = 59

CONST COL1 = 10, COL2 = 50, ROW = 9

CONST COL3 = 7, COL4 = 42

```
'OPEN "A:\MAT.DAT" FOR INPUT AS #3
'OPEN "B:\MAT.DAT" FOR INPUT AS #3
OPEN "MAT.DAT" FOR INPUT AS #3
INPUT #3, matcount
CLOSE #3
'OPEN "A:\NEWCOUNT.DAT" FOR INPUT AS #4
'OPEN "B:\NEWCOUNT.DAT" FOR INPUT AS #4
OPEN "NEWCOUNT.DAT" FOR INPUT AS #4
INPUT #4, newstuff
CLOSE #4
matcount = matcount + newstuff
CALL Loadmaterial (Menu.material)
   ' Block cursor
   LOCATE ROW, COL1, 1, 1, 12
CALL UPDATEMENU
      Skip field 10 if there's only one value
IF LEN(Available$) = 1 THEN Fields = 8 ELSE Fields = 10
      Update field values and position based on keystrokes
DO
        Put cursor on field
   LOCATE ROW + Fld, COL4 + 2
        Get a key and strip null off if it's an extended code
   DO
     Key$ = INKEY$
    LOOP WHILE Key$ = ""
   Ky = ASC(RIGHT\$(Key\$, 1))
      SELECT CASE Ky
         CASE ESCAPE
            ' End program
            CLS : END
         CASE F1
                          ' review material parameters
            flag3 = 1
            CALL MATMENU
            flag3 = 0
            DO
              DO
                Key2$ = INKEY$
               LOOP WHILE Key2$ = ""
              Ky2 = ASC(RIGHT\$(Key2\$, 1))
             LOOP UNTIL Ky2 = ESCAPE
             CLS
             CALL UPDATEMENU
         CASE ENTER
              runs material parameter entry subroutine
            IF Menu.material = 1 OR Menu.material = 51 THEN NEWMAT (Ky)
         CASE UPARROW, DOWNARROW
            ' Adjust field location
            IF Ky = DOWNARROW THEN Inc = 2 ELSE Inc = -2
            Fld = Rotated(0, Fields, Fld, Inc)
```

```
CASE RIGHTARROW, LEFTARROW
   ' Adjust field value
   IF Ky = RIGHTARROW THEN Inc = 1 ELSE Inc = -1
   SELECT CASE Fld
      CASE 0
         ' Units
         IF Menu.units = "Brit" THEN
             Menu.units = " SI "
             Menu.material = Menu.material + 50
             CALL Loadmaterial (Menu.material)
             CALL UPDATEMENU
           ELSE
             Menu.units = "Brit"
             Menu.material = Menu.material - 50
             CALL Loadmaterial (Menu.material)
             CALL UPDATEMENU
          END IF
      CASE 2
         ' Material Selection
         IF Menu.units = "Brit" THEN
              Menu.material = Rotated(1, matcount, Menu.material, Inc)
              CALL Loadmaterial (Menu.material)
              PRINT USING "&"; matname
            ELSE
              Menu.material = Rotated(51, matcount + 50, Menu.material,
                                         Inc)
              CALL Loadmaterial (Menu.material)
              PRINT USING "&"; matname
           END IF
      CASE 4
         ' Stress Consentration Factor Kt
                                                                 ", Kt)
         CALL TYPIN("Enter stress concentration factor (Kt):
         CALL UPDATEMENU
      CASE 6
         ' Fatigue Stress Concentration Calculation Method
         Menu.Ktf = Rotated(1, 3, Menu.Ktf, Inc)
         SELECT CASE Menu.Ktf
            CASE 1
                  manual entry'
               option4 = "Manually Entered "
               LOCATE ROW + 8, CO\overline{L4}: PRINT USING "&"; "[ --- ]
               LOCATE ROW + 6, COL4 + 2: PRINT USING "&"; option4
            CASE 2
                 Neubers Method
               option4 = "Neuber's Method
               LOCATE ROW + 8, COL4: PRINT USING "&"; "[ --- ]
                                                                     ";
               LOCATE ROW + 6, COL4 + 2: PRINT USING "&"; option4
            CASE 3
                  Peterson Method
               option4 = "Peterson's Method"
               LOCATE ROW + 8, COL4: PRINT USING "&"; "[ --- ]
               LOCATE ROW + 6, COL4 + 2: PRINT USING "&"; option4
            CASE ELSE
         END SELECT
```

```
CASE 8
                 Fatique Stress Concentration Factor displayed
               SELECT CASE Menu.Ktf
                  CASE 1
                     ' manual entry'
                     CALL TYPIN("Enter fatigue stress concentration factor
                                 (Ktf): ", Ktf)
                     CALL UPDATEMENU
                  CASE 2
                       Neubers Method
                     CALL NeuberKf
                     CALL UPDATEMENU
                  CASE 3
                     ' Peterson Method
                     CALL PetersonKf
                     CALL UPDATEMENU
                  CASE ELSE
               END SELECT
            CASE 10
               ' Available screen modes
               i = INSTR(Available$, HEX$(VC.Scrn))
               i = Rotated(1, LEN(Available$), i, Inc)
               VC.Scrn = VAL("&h" + MID$(Available$, i, 1))
               PRINT USING "##"; VC.Scrn
            CASE ELSE
         END SELECT
      CASE ELSE
  END SELECT
' if cluase to ensure selection of a fatigue stress concentation factor
IF Ky = ENTER AND Ktf = 0 THEN
     Fld = 8
     CALL TYPIN("Enter fatigue stress concentration factor (Ktf): ", Ktf)
     CALL UPDATEMENU
     Ky = 0
 END IF
' Return to main program if ENTER
LOOP UNTIL (Ky = ENTER AND Ktf <> 0 AND matname <> "new material")
```

END SUB

T. SUBROUTINE OPTMENU2

```
Define/swtich the user selectable functions for processing options
SUB OPTMENU2 STATIC
SHARED VC AS Config, menu2 AS Options2, Available AS STRING, Fields AS INTEGER
SHARED Fld AS INTEGER
' Constants for key codes and column positions
CONST ENTER = 13, ESCAPE = 27, F2 = 60
CONST DOWNARROW = 80, UPARROW = 72, LEFTARROW = 75, RIGHTARROW = 77
CONST COL1 = 10, COL2 = 50, ROW = 9
CONST COL3 = 7, COL4 = 42
  ' Return cursor to menu top
  Fld = 0
CALL UPDATEMENU2
     Skip field 10 if there's only one value
IF LEN(Available$) = 1 THEN Fields = 8 ELSE Fields = 10
     Update field values and position based on keystrokes
DO
       Put cursor on field
  LOCATE ROW + Fld, COL4 + 2
      Get a key and strip null off if it's an extended code
  DO
    Key$ = INKEY$
   LOOP WHILE Key$ = ""
  Ky = ASC(RIGHT\$(Key\$, 1))
     SELECT CASE Ky
       CASE ESCAPE
          ' End program
          CLS : END
          CLS : flag2 = 0
        CASE F2
                               ' changes sound to condition show in flag5
          IF flag5 = "ON" THEN
                               ' (sound is opposite of flag)
              flag5 = "OFF"
           ELSE
             flag5 = "ON"
          END IF
          UPDATEMENU2
        CASE UPARROW, DOWNARROW
           ' Adjust field location
          IF Ky = DOWNARROW THEN Inc = 2 ELSE Inc = -2
          Fld = Rotated(0, Fields, Fld, Inc)
        CASE RIGHTARROW, LEFTARROW
           ' Adjust field value
          IF Ky = RIGHTARROW THEN Inc = 1 ELSE Inc = -1
          SELECT CASE Fld
```

```
CASE 0
   ' type of inputs (stress vs strain)
   IF menu2.inputs = "Stress" THEN
       menu2.inputs = "Strain"
       inputfile = "STRAIN.DAT"
     ELSE
       menu2.inputs = "Stress"
       inputfile = "STRESS.DAT"
    END IF
   UPDATEMENU2
CASE 2
   ' Equation Selection
   menu2.equation = Rotated(1, 3, menu2.equation, Inc)
   SELECT CASE menu2.equation
       CASE 1
          ' Morrow's equation
          equationname = "Morrow's equation"
       CASE 2
          ' Smith Watson Topper
          equationname = "Smith-Watson-Topper"
       CASE 3
          ' Manson Halford
          equationname = "Manson-Halford"
       CASE ELSE
    END SELECT
   UPDATEMENU2
CASE 4
     variable/fixed n' and K'
   menu2.option3 = Rotated(1, 4, menu2.option3, Inc)
   SELECT CASE menu2.option3
       CASE 1
          ' fixed n and K
          nKtype = " Fixed n' and K' "
       CASE 2
          ' variable n' and K'
          nKtype = "Variable n' and K'"
       CASE 3
          ' variable n' and fixed K'
          nKtype = "Variable n' and fixed K'"
       CASE 4
          ' fixed n' and variable K'
          nKtype = "Fixed n' and variable K'"
       CASE 5
          ' Experimental - not used
          nKtype = "Experimental"
       CASE ELSE
    END SELECT
   UPDATEMENU2
CASE 6
     calculation type
   menu2.option4 = Rotated(1, 3, menu2.option4, Inc)
   SELECT CASE menu2.option4
       CASE 1
          ' blocks to failure
          calctype = "Load blocks to failure"
       CASE 2
          ' single block effects
          calctype = "Single block effects"
```

```
CASE 3
                         ' batch process
                         calctype = "Batch Process"
                         flag4 = 1
                      CASE ELSE
                   END SELECT
                  UPDATEMENU2
               CASE 8
                    input data file name
                  CALL TYPINSTRING("Input data file's name:", inputfile)
                  UPDATEMENU2
               CASE 10
                  ' output data file name
                  CALL TYPINSTRING("Output data file's name:", outputfile)
                  UPDATEMENU2
               CASE ELSE
            END SELECT
         CASE ELSE
      END SELECT
     if cluase to ensure selection of a fatigue stress concentation factor
   IF Ky = ENTER AND Ktf = 0 THEN
        Fld = 8
        CALL TYPIN("Enter fatigue stress concentration factor (Ktf): ", Ktf)
        CALL UPDATEMENU
        Ky = 0
    END IF
   ' Return to main program if ENTER
  LOOP UNTIL (Ky = ENTER AND Ktf <> 0 AND matname <> "new material") OR (Ky =
                                                                        ESCAPE)
CLS
END SUB
```

U. SUBROUTINE OUTPUTER

```
REM $STATIC
subroutine writes to an output file compution parameters
                      and results
SUB OUTPUTER
OPEN outputfile FOR APPEND AS #11
WRITE #11,
WRITE #11,
WRITE #11, equationname
WRITE #11, nKtype
WRITE #11, calctype
WRITE #11, "input file:", inputfile
WRITE #11, "output file:", outputfile
WRITE #11, "output file:", outputfile
WRITE #11, "blocks:", block
WRITE #11, "i counter:", lasti
WRITE #11, "reversal count:", NNfcount
WRITE #11, "life factor:", usedlife
WRITE #11,
WRITE #11,
CLOSE #11
END SUB
```

V. SUBROUTINE PetersonKf

W. FUNCTION Rotated

X. SUBROUTINE TYPIN

Y. SUBROUTINE TYPINSTRING

END SUB

Z. SUBROUTINE UPDATEMENU

END SUB

```
' subroutine to update the options menu (menu 1)
SUB UPDATEMENU
SHARED VC AS Config, Menu AS Options1, Available AS STRING, Fields AS INTEGER,
Fld AS INTEGER
' Constants for key codes and column positions
CONST COL1 = 10, COL2 = 50, ROW = 9
CONST COL3 = 7, COL4 = 42
  ' Display key instructions
  LOCATE 1, COL1
  PRINT "UP ..... Move to next field"
  LOCATE 2, COL1
  PRINT "DOWN ...... Move to previous field"
  LOCATE 3, COL1
  PRINT "LEFT/RIGHT .... Change field up/down"
  LOCATE 4, COL1
  PRINT "F1 .... Display matrial's parameters"
  LOCATE 5, COL1
  PRINT "ENTER .... Start with current values"
  LOCATE 6, COL1
  PRINT "ESCAPE ...... Quit Program"
  ' Display fields
  LOCATE ROW, COL3: PRINT "Type of units (SI or British)";
  LOCATE ROW, COL4: PRINT USING "[ & ] "; Menu.units;
  LOCATE ROW + 2, COL3: PRINT "Material";
  LOCATE ROW + 2, COL4: PRINT USING "[ & ]"; matname;
  LOCATE ROW + 4, COL3: PRINT "Stress concentration factor (Kt)";
  LOCATE ROW + 4, COL4: PRINT USING "[ ##.### ]"; Kt;
  LOCATE ROW + 6, COL3: PRINT "Method to calculate Kf";
  LOCATE ROW + 6, COL4: PRINT USING "[ & ]"; option4
  LOCATE ROW + 8, COL3: PRINT "Fatigue stress conc. factor (Kf)";
  LOCATE ROW + 8, COL4: PRINT USING "[ ##.### ]"; Ktf;
  LOCATE ROW + 10, COL3: PRINT "Screen Mode";
  LOCATE ROW + 10, COL4: PRINT USING "[ ## ]"; VC.Scrn
```

AA. SUBROUTINE UPDATEMENU2

```
' subroutine to update the options menu (menu 2)
SUB UPDATEMENU2
SHARED VC AS Config, menu2 AS Options2, Available AS STRING, Fields AS INTEGER,
Fld AS INTEGER
' Constants for key codes and column positions
CONST COL1 = 10, COL2 = 50, ROW = 9
CONST COL3 = 7, COL4 = 42
CLS
  ' Display key instructions
  LOCATE 1, COL1
  PRINT "UP ..... Move to next field"
  LOCATE 2, COL1
  PRINT "DOWN ...... Move to previous field"
  LOCATE 3, COL1
  PRINT "LEFT/RIGHT .... Change field up/down"
  LOCATE 4, COL1
  PRINT USING "F2 ...... Turn sound to & "; flag5
  LOCATE 5, COL1
  PRINT "ENTER .... Start with current values"
  LOCATE 6, COL1
  PRINT "ESCAPE ... Return to previous screen"
  ' Display fields
  LOCATE ROW, COL3: PRINT "Type of inputs (stress or strain)";
  LOCATE ROW, COL4: PRINT USING "[ & ] "; menu2.inputs;
  LOCATE ROW + 2, COL3: PRINT "Equation";
  LOCATE ROW + 2, COL4: PRINT USING "[ & ] "; equationname;
  LOCATE ROW + 4, COL3: PRINT "Fixed / Varing n' and K'";
  LOCATE ROW + 4, COL4: PRINT USING "[ & ] "; nKtype;
  LOCATE ROW + 6, COL3: PRINT "Calculation Type
  LOCATE ROW + 6, COL4: PRINT USING "[ & ]"; calctype;
  LOCATE ROW + 8, COL3: PRINT "Input file name
  LOCATE ROW + 8, COL4: PRINT USING "[ & ]"; inputfile;
  LOCATE ROW + 10, COL3: PRINT "Output file name ";
  LOCATE ROW + 10, COL4: PRINT USING "[ & ]"; outputfile;
```

END SUB

AB. FUNCTION xxKf

```
Returns the value calculated for K' based on the
             number of cycles executed
FUNCTION xxKf
SHARED menu2 AS Options2
SELECT CASE menu2.option3
            'fixed K'
   CASE 1
       xxKf = Kf
   CASE 2
            ' variable K'
       IF NNfcount > 1000000 THEN
           xxKf = Kf
         ELSEIF NNfcount < 2000 THEN
           xxKf = K
         ELSE
           xxKf = ((Kf - K) / (LOG10(500000) - LOG10(1000))) *
                 (LOG10(NNfcount / 2) - LOG10(1000)) + K
   CASE 3 'fixed K'
       xxKf = Kf
            ' variable K'
        IF NNfcount > 1000000 THEN
           xxKf = Kf
         ELSEIF NNfcount < 2000 THEN
           xxKf = K
         ELSE
           xxKf = ((Kf - K) / (LOG10(500000) - LOG10(1000))) *
                 (LOG10 (NNfcount / 2) - LOG10 (1000)) + K
        END IF
   CASE ELSE
END SELECT
END FUNCTION
```

AC. FUNCTION xxnf

```
ELSEIF NNfcount < 2000 THEN
              xxnf = n
           ELSE
              xxnf = ((nf - n) / (LOG10(500000) - LOG10(1000))) *
                     (LOG10(NNfcount / 2) - LOG10(1000)) + n
          END IF
     CASE 3
             ' variable n'
         IF NNfcount > 1000000 THEN
              xxnf = nf
            ELSEIF NNfcount < 2000 THEN
              xxnf = n
           ELSE
              xxnf = ((nf - n) / (LOG10(500000) - LOG10(1000))) *
                     (LOG10(NNfcount / 2) - LOG10(1000)) + n
          END IF
     CASE 4 ' fixed n'
         xxnf = nf
     CASE ELSE
END SELECT
END FUNCTION
```

AD. FUNCTION xxNNfcount

APPENDIX B. PROGRAM LOADGEN

```
Random load generation program
          based on a typicical 1000 hour block for an A-6 aircraft
DIM outfile AS STRING
CONST fourg = 1978
CONST fiveg = 333
CONST sixg = 48
CONST seveng = 10
CONST totalg = fourg + fiveg + sixg + seveng
CONST Su = 84
CONST Sy = 76
CONST gdesign = 6.5
RANDOMIZE TIMER
CLS
'LOCATE 20, 10: PRINT "Enter name for stress load output file:" 'LOCATE 20, 50: INPUT outfile
FOR j = 1 TO 4
                  ' loop to create four random files
fourcount = fourg
fivecount = fiveg
sixcount = sixg
sevencount = seveng
totalcount = fourg + fiveg + sixg + seveng
SELECT CASE j
      CASE 1
        OPEN "testaa" FOR OUTPUT AS #2
      CASE 2
        OPEN "testbb" FOR OUTPUT AS #2
      CASE 3
        OPEN "testcc" FOR OUTPUT AS #2
      CASE 4
        OPEN "testdd" FOR OUTPUT AS #2
      CASE ELSE
END SELECT
```

```
"g" load history greneration:
OPEN "gseries" FOR OUTPUT AS #1
WHILE totalcount > 0
  DO
    x = RND
    xx = RND
    IF x <= (seveng / totalg) THEN</pre>
        ' 7+ "g" case
        IF sevencount = 0 THEN EXIT DO
        y = 7 + (INT(xx * 10)) / 10
        WRITE #1, y
        WRITE #1, 1
        sevencount = sevencount - 1
     ELSEIF x <= ((seveng + sixg) / totalg) THEN
        ' 6 to 7 "g" case
        IF sixcount = 0 THEN EXIT DO
        y = 6 + (INT(xx * 10)) / 10
        WRITE #1, y
        WRITE #1, 1
        sixcount = sixcount - 1
     ELSEIF x <= ((seveng + sixg + fiveg) / totalg) THEN
        ' 5 to 6 "g" case
        IF fivecount = 0 THEN EXIT DO
        y = 5 + (INT(xx * 10)) / 10
        WRITE #1, y
        WRITE #1, 1
        fivecount = fivecount - 1
     ELSE
        ' 4 to 5 "g" case
IF fourcount = 0 THEN EXIT DO
        y = 4 + (INT(xx * 10)) / 10
        WRITE #1, y
        WRITE #1, 1
        fourcount = fourcount - 1
    END IF
   totalcount = fourcount + fivecount + sixcount + sevencount
  LOOP
WEND
WRITE #1, 999
CLOSE #1
```

```
' conversion of "g" load history to a stress load history:
IF Su > (1.5 * Sy) THEN
     gtostress = Su / (1.5 * gdesign)
   ELŠE
gtostress = Sy / (gdesign)
END IF
OPEN "gseries" FOR INPUT AS #3
INPUT #3, load
WHILE load < 999
  stressload = load * gtostress
  WPITE #2, stressload INPUT #3, load
WEND
CLOSE #2
CLOSE #3
load = 0
NEXT j
END
```

APPENDIX C. MATLAB DATA REDUCTION PROGRAM

A. PROGRAM CODE

```
UNCORRECTED STRAIN + LOAD DATA (for K and n)
format compact
  Monotonic #1
         (81 points)
                                     3
                                               4
                                                       5
                             2
                                                                 6
          0 1
ex0a=[.0004; .0012; .0022; .0030; .0038; .0047; .0055; .0063; .0071; .0081;
       .0091; .0099; .0110; .0119; .0127; .0136; .0143; .0152; .0159; .0168;
        .0176; .0184; .0192; .0200; .0208; .0216; .0224; .0232; .0241; .0249;
        .0257; .0265; .0273; .0281; .0289; .0297; .0305; .0313; .0322; .0330;
       .0356; .0381; .0401; .0422; .0443; .0464; .0487; .0510; .0530; .0551; .0573; .0595; .0617; .0640; .0663; .0687; .0707; .0721; .0756; .0835; .0859; .0880; .0901; .0923; .0944; .0966; .1170; .1373; .1574; .1777; .2005; .2376; .2727; .3034; .3316; .3604; .3924; .4274; .4643; .5019; .5399; .5786];
                          998; 1332; 1650; 1979; 2307; 2627; 2975; 3350;
ld0a=[ 305;
                  628;
        3724; 4118; 4488; 4829; 5145; 5463; 5771; 6088; 6406; 6731;
       7044; 7345; 7663; 7973; 8278; 8574; 8896; 9214; 9526; 9841; 10140; 10448; 10726; 11036; 11341; 11635; 11943; 12223; 12513; 12789; 13738; 14374; 14874; 15312; 15695; 16003; 16278; 16515; 16687; 16839; 16971; 17098; 17214; 17307; 17390; 17475; 17534; 17616; 17675; 17888;
       17884; 17921; 17967; 17990; 18027; 18060; 18266; 18419; 18532; 18627;
       18901; 18843; 18916; 18992; 19065; 19128; 19176; 19225; 19264; 19302;
       19326; 19339];
   'Monotonic #2
         (88 points)
                                    3
                                               4
                                                      5
                                                                 6
                             2
ex0b=[.0005; .0012; .0021; .0029; .0037; .0045; .0053; .0060; .0068; .0076;
       .0085; .0093; .0103; .0112; .0120; .0128; .0135; .0143; .0151; .0159;
        .0166; .0174; .0182; .0190; .0198; .0205; .0213; .0220; .0228; .0236;
        .0244; .0251; .0259; .0267; .0274; .0282; .0290; .0298; .0305; .0313;
       .0340; .0362; .0382; .0404; .0425; .0446; .0468; .0489; .0510; .0531; .0553; .0574; .0596; .0618; .0641; .0664; .0684; .0704; .0725; .0791; .0812; .0834; .0855; .0877; .0900; .0923; .1125; .1327; .1530; .1734;
        .1934; .2134; .2336; .2538; .2742; .2943; .3145; .3350; .3550; .3755;
       .3958; .4159; .4359; .4561; .4762; .4965; .5166; .5368; .5572];
                  619; 962; 1303; 1619; 1958; 2275; 2590; 2911; 3242;
ld0b=[ 306;
       3596; 3972; 4375; 4697; 5001; 5333; 5631; 5943; 6259; 6569; 6890; 7195; 7511; 7815; 8131; 8417; 8723; 9041; 9339; 9651; 9934; 10240; 10540; 10852; 11134; 11442; 11749; 12031; 12300; 12574; 13536; 14209; 14795; 15374; 15854; 16297; 16676; 16931; 17147; 17273;
       17399; 17496; 17586; 17667; 17744; 17804; 17854; 17901; 17947; 18073;
       18095; 18131; 18163; 18197; 18221; 18248; 18432; 18571; 18661; 18768;
       18851; 18927; 19002; 19052; 19105; 19153; 19200; 19241; 19277; 19305;
       19224; 19258; 19381; 19404; 19417; 19433; 19438; 19449; 19452];
```

```
10 percent: 3790 cycles
        (73 points)
                                   3
                                           4 5 6
ex10=[.0005; .0013; .0022; .0030; .0038; .0047; .0054; .0063; .0071; .0079
       .0088; .0099; .0108; .0117; .0126; .0134; .0142; .0151; .0159; .0167 .0175; .0184; .0192; .0200; .0209; .0217; .0225; .0233; .0242; .0250 .0258; .0266; .0274; .0283; .0291; .0299; .0307; .0316; .0324; .0332 .0361; .0381; .0402; .0422; .0444; .0466; .0489; .0511; .0532; .0553
       .0574; .0595; .0618; .0638; .0660; .0682; .0703; .0725; .0746; .0778
       .0798; .0818; .0840; .0861; .0882; .0902; .1102; .1304; .1506; .1707
       .1911; .2114; .2314; .2516];
                595; 934; 1252; 1561; 1864; 2160; 2469; 2770; 3098 3795; 4170; 4486; 4785; 5076; 5365; 5671; 5967; 6274 6856; 7161; 7450; 7748; 8026; 8334; 8619; 8911; 9211 9787; 10071; 10361; 10652; 10946; 11225; 11517; 11812; 12074
ld10=[ 302;
        3446;
        6571;
        9490:
       13059; 13751; 14478; 15148; 15875; 16591; 17315; 18004; 18577; 19073
       19372; 19536; 19560; 19573; 19577; 19572; 19553; 19524; 19483; 19365
       19325; 19297; 19303; 19297; 19282; 19324; 19304; 19264; 19261; 19243
       19202; 19137; 19015; 18802];
  20 percent: 7580 cycles
        (87 points)
                                                            6
                                                      5
                                                                       7
                                                                               8
                   1
                            2
                                  3
                                          4
ex20=[.0007; .0016; .0028; .0039; .0049; .0060; .0069; .0081; .0090; .0102
       .0113; .0121; .0132; .0142; .0153; .0162; .0172; .0181; .0191; .0261 .0211; .0220; .0229; .0240; .0250; .0260; .0271; .0282; .0295; .0309
       .0322; .0334; .0349; .0363; .0379; .0394; .0410; .0426; .0442; .0458
       .0515; .0536; .0558; .0581; .0604; .0626; .0649; .0672; .0695; .0717
       .0740; .0762; .0784; .0806; .0826; .0849; .0873; .0897; .0918; .1010
       .1031; .1051; .1073; .1094; .1117; .1139; .1339; .1542; .1747; .1948 .2150; .2351; .2553; .2756; .2959; .3159; .3360; .3561; .3764; .3965 .4168; .4368; .4569; .4771; .4974; .5179; .5385; .5586];
1d20=[ 327;
                 650;
                         984; 1324; 1641; 1955; 2271; 2609; 2952; 3291
        3592; 3911; 4246; 4540; 4896; 5206; 5513; 5827; 6132;
                7077; 7411; 7699; 8034; 8301; 8629; 8918; 9245; 9516
        6782;
        9816; 10093; 10364; 10670; 10939; 11241; 11518; 11793; 12051; 12331
       13238; 13543; 13876; 14198; 14513; 14846; 15122; 15467; 15741; 16030
       16302; 16577; 16838; 17029; 17194; 17366; 17483; 17593; 17656; 17921 17944; 18007; 18062; 18086; 18120; 18157; 18402; 18583; 18703; 18802
       18888; 18951; 19025; 19092; 19140; 19209; 19253; 19297; 19343; 19387
       19414; 19456; 19463; 19501; 19528; 19576; 19567; 19571];
```

```
30 percent: 11370 cycles
               (88 points)
                                1
                                                              3
                                                                            4
                                                                                         5
                                                                                                        6
                                                                                                                         7
ex30=[.0004; .0012; .0021; .0030; .0038; .0046; .0055; .0063; .0071; .0079;
             .0089; .0098; .0107; .0116; .0125; .0133; .0141; .0150; .0158; .0166;
             .0174; .0182; .0191; .0199; .0207; .0215; .0223; .0230; .0239; .0246;
             .0255; .0263; .0271; .0279; .0278; .0295; .0303; .0311; .0319; .0327;
            .0355; .0376; .0398; .0419; .0441; .0463; .0483; .0505; .0527; .0547; .0568; .0589; .0609; .0630; .0651; .0693; .0716; .0736; .0819; .0843; .0843; .0867; .0892; .0915; .0938; .0963; .1169; .1372; .1576; .1780; .1989; .2196; .2397; .2602; .2803; .3008; .3209; .3412; .3613; .3813; .4016; .4216; .4418; .4625; .4829; .5031; .5235; .5438; .5645];
ld30=[ 293;
                               595;
                                              939; 1266; 1583; 1912; 2225; 2539;
                                                                                                                                    2871; 3196;
                           3901; 4302; 4632; 4917; 5237; 5562; 5871;
               3546;
                                                                                                                                  6176; 6486;
               6812;
                                          7423;
                             7112;
                                                       7719; 8029; 8321; 8608; 8900;
                                                                                                                                  9224;
                                                                                                                                                9520;
              9809; 10117; 10402; 10719; 11009; 11293; 11599; 11905; 12193; 12473;
             13473; 14261; 15044; 15811; 16554; 17289; 17942; 18590; 18954; 19085;
             19101; 19087; 19093; 19094; 19091; 19085; 19086; 19105; 19098; 19089;
            19093; 19073; 19114; 19104; 19111; 19088; 19098; 19053; 19081; 19132;
             19181; 19239; 19255; 19295; 19297; 19332; 19365; 19389; 19438; 19486;
             19489; 19498; 19501; 19493; 19498; 19487; 19503; 19510; 19498];
      40 percent: 15160 cycles
               (86 points)
                   0
                                 1
                                                2
                                                            3
                                                                           4
                                                                                         5
                                                                                                         6
                                                                                                                         7
                                                                                                                                                      9
ex40 = [.0002; .0015; .0031; .0045; .0057; .0070; .0082; .0095; .0107; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119; .0119;
            .0129; .0144; .0158; .0173; .0187; .0205; .0220; .0236; .0253; .0269; .0286; .0304; .0320; .0337; .0354; .0372; .0389; .0408; .0425; .0442; .0460; .0479; .0497; .0515; .0534; .0554; .0575; .0593; .0612; .0631;
             .0697; .0717; .0738; .0759; .0780; .0800; .0820; .0845; .0866; .0891;
             .0911; .0934; .0958; .0983; .1005; .1028; .1051; .1075; .1097; .1191;
             .1214; .1237; .1261; .1283; .1306; .1328; .1532; .1737; .1939; .2139; .2343; .2545; .2746; .2950; .3151; .3355; .3555; .3758; .3962; .4165;
             .4369; .4571; .4772; .4973; .5175; .5379; .5581];
1d40=[ 158;
                             450;
                                              835;
                                                           948; 1230; 1682;
                                                                                                      2094; 2415;
                                                                                                                                   2720; 2949;
              3194;
                             3482; 3794;
                                                         4049;
                                                                       4339;
                                                                                      4635;
                                                                                                    4942;
                                                                                                                   5220;
                                                                                                                                  5500; 5777:
                           6356; 6625;
                                                        6915;
                                                                       7192;
               6077:
                                                                                      7509; 7741; 8026; 8301; 8564;
              8836; 9103; 9381; 9644; 7923; 9507; 9712; 10160; 10471; 10657;
              9823; 12246; 10089; 10914; 12698; 11817; 10769; 13885; 13498; 11450;
             12099; 13279; 14430; 14394; 14704; 15653; 14991; 16104; 16423; 16972;
            17423; 16899; 17247; 17428; 17435; 17558; 18103; 18422; 1861; 18789; 18920; 19008; 19074; 19148; 19206; 19185; 19232; 19362; 19395 19464;
            19503; 19539; 19445; 19588; 19634; 19664; 19667];
```

```
% adjust number:
area = .046875;
1d0a = 1d0a / 5;
                   stress0a = 1d0a / area;
1d0b = 1d0b / 5;
                  stress0b = 1d0b / area;
ld10 = ld10 / 5;    stress10 = ld10 / area;
1d20 = 1d20 / 5; stress20 = 1d20 / area;
ld30 = ld30 / 5; stress30 = ld30 / area;
1d40 = 1d40 / 5;
                   stress40 = ld40 / area;
strain0a = ex0a * .3;

strain0b = ex0b * .3;
strain10 = ex10 * .3;
strain20 = ex20 * .3;
strain30 = ex30 * .3;
strain40 = ex40 * .3;
%!del a:\ernie.met
%!del ermie.met
plot(strain0a, stress0a), title('Monotonic #1 Stress-Strain'), grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
%pause
%meta a:\ernie
plot(strain0b, stress0b), title('Monotonic #2 Stress-Strain'), grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
%pause
%meta a:\ernie
plot(strain10,stress10),title('10% Life Stress-Strain'),grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
%pause
%meta a:\ernie
plot(strain20, stress20), title('20% Life Stress-Strain'), grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
%pause
%meta a:\ernie
plot(strain30,stress30),title('30% Life Stress-Strain'),grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
*pause
%meta a:\ernie
plot(strain40,stress40),title('40% Life Stress-Strain'),grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
*pause
%meta a:\ernie
plot(strain0b, stress0b, strain10, stress10, strain20, stress20, . . .
strain30, stress30, strain40, stress40), title('Stress-Strain'), grid
xlabel('Strain (in/in)'),ylabel('Stress (psi)');
*pause
%meta a:\ernie
```

```
!del ernie.out
diary erine.out
% compute true strain from engineering
tstrain0a = log(1 + strain0a);
tstrain0b = log(1 + strain0b);
tstrain10 = log(1 + strain10);
tstrain20 = log(1 + strain20);
tstrain30 = log(1 + strain30);
tstrain40 = log(1 + strain40);
% compute true stress from engineering
sig1 = stress0a .* (1 + tstrain0a);
sig2 = stress0b .* (1 + tstrain0b);
sig3 = stress10 .* (1 + tstrain10);
sig4 = stress20 .* (1 + tstrain20);
sig5 = stress30 .* (1 + tstrain30);
sig6 = stress40 .* (1 + tstrain40);
lsig1 = log10(sig1);
lsig2 = log10(sig2);
lsig3 = log10(sig3);
lsig4 = log10(sig4);
lsig5 = log10(sig5);
lsig6 = log10(sig6);
E = 10300000;
x1 = log10(tstrain0a(2:82) - sig1(2:82)/E);
x2 = log10(tstrain0b - sig2/E);
x3 = log10(tstrain10 - sig3/E);
x4 = log10(tstrain20 - sig4/E);
x5 = log10(tstrain30(2:89) - sig5(2:89)/E);
x6 = log10(tstrain40(2:87) - sig6(2:87)/E);
lsig1a = lsig1(2:82);
lsig5a = lsig5(2:89);
lsig6a = lsig6(2:87);
xxl = polyfit(x1, lsigla, 1)
xx2 = polyfit(x2, lsig2, 1)

xx3 = polyfit(x3, lsig3, 1)

xx4 = polyfit(x4, lsig4, 1)

xx5 = polyfit(x5, lsig5a, 1)

xx6 = polyfit(x6, lsig6a, 1)
```

```
K1 = 10^(xx1(2))

K2 = 10^(xx2(2))

K3 = 10^(xx3(2))

K4 = 10^(xx4(2))

K5 = 10^(xx5(2))

K6 = 10^(xx6(2))

n1 = xx1(1)

n2 = xx2(1)

n3 = xx3(1)

n4 = xx4(1)

n5 = xx5(1)

n6 = xx6(1)

diary
```

B. PROGRAM OUTPUT/RESULTS

xx1 = xx2 = xx3 = xx4 = xx5 = xx6 =	0.4425 0.4331 0.6246 0.5063 0.4261 0.5902	5.6106 5.5810 6.0503 5.6425 5.5662 5.6822
K1 = K2 = K3 = K4 = K5 = K6 =	4.0798e+005 3.8107e+005 1.1229e+006 4.3900e+005 3.6831e+005 4.8105e+005	
n1 = n2 = n3 = n4 = n5 = n6 =	0.4425 0.4331 0.6246 0.5063 0.4261 0.5902	

APPENDIX D. MATERIAL DATA BASE

A. BRITISH/AMERICAN UNITS

Monotonic and Cyclic Strain Properties of Selected Engineering Alloys: American/British units

	Process		S _w /S _w /	K/K'			σεσί			$\frac{S_{s}}{(2N = 10)^{2}}$,
Material	Description	Sy. (ksi)	ردر (ksi/ksi)	(ksi/ksi)	nin'	$\epsilon_{i},\epsilon_{j}$	(ksi/ksi)	h	r	(ksi)	
Steel											
1005-1009	H.R. sheet	50	38/33	77:67	0.16/0.12	1.6/0.10	123/93	-0.109	- () 30	21	0.43
1005-1009	C.D. sheer	60	58/36	76.71	0.049'0 11	1.02/0.11	122/78	-0.073	-0.41	28	0.47
1020	H.R. sheet	64	38/35	107/112	0.19/0.18	0.96/0.41	103/130	-0.12	-0.51	22	0.34
00301	Cast steel	72	44/46		0.30/0.13	0.62/0.28	109/95	-0.082	-0.51	28	0.38
Man-Ten	H.R. sheet	74	57/54	114	0.20/0.11	1.02/0.86	118/117	-0.071	-0.65	38	0.51
1040	As forged	90	50/56		0.22/0.18	0.93/0.61	152/223	-0.14	-0.57	25	0.28
RQC-100	H.R. sheet	135	128/87	170/208	0.06/0.14	1 02/0.66	193/180	-0.07	-0.69	50	0.43
4142	Drawn at temp.	154	152/108		-/0.18	0.35/0.22	162/210	-0.10	-0.51	44	0.28
4142	T & Q	205	200/120		0.051/0.17	0.66/0.45	265/265	-0.08	-0.75	73	0.36
4142	0.8.1	280	250/195		0.048/0.13	0.43/0.09	315/315	-0.081	-0.61	85	0.31
4340	H.R. and annealed	120	92/66		/0.18	0.57/0.45	158/174	-0.095	-0.54	40	0.33
434()	T 3. O	180	170/110	299	0.066/0.14	0.84/0.73	240/240	-0.076	-0.62	71	0.40
4340	T 3 ()	213	199/120		0.15	0.48/0.48	226/290	-0.091	-0.60	88	0.32
9262	Annealed	134	66/76	253/200	0.22/0.15	0.16/0.16	151/151	-0.071	-0.47	50	0.38
9262	0.6.1	145	114/94	/197	0.14/0.12	0.41/0.41	177/177	-0.073	-0.60	55	0.38
Aluminum	•										
1100-0	As received	16	14'9		/0.15	2.09.1.8	/28	-0.106	-0.69	5	0.33
2024-T3	_	68	55/62	66/95	0.032/0.065	0.28/0.22	81/160	~0.124	-0.59	22	0 32
2024-74		69	44/64	117	0.20/0.08	0.43/0.21	92/147	-0.11	-0.52	25	0.37
5456-H3	_	58	34/52		/0,16	0.42/0.46	76/105	-0.11	-0.67	18	0.31
7075-16	_	84	68/76	120-	0.11/0.146	0.41/0.19	108/191	~0.126	-0.52	25	0.30

B. SI UNITS

Monotonic and Cyclic Strain Properties of Selected Engineering Alloys: SI Units

	Process	.S.	S _w .S _w ',	K.K.			$\sigma_{\ell} \sigma_{\ell}$.	-		$\frac{5}{2N} = 10^{7}$	
Material	Description	-	(MPa MPa)	(MPa/MPa)	$a \cdot n$	ϵ_i,ϵ_j	(MPa/MPa)	Ь		(MPa)	1,5.
Steel											
1005-1009	H.R. sheet	345	262/228	531 462	0,16-0.12	1.6/0.10	848/641	-0.109	~i) 19	148	0.43
1005-1009	C.D. sheet	114	400/248	524/290	0.049/0.11	1.02/0.11	841/538	-1) ()73	-0.41	195	0,47
1020	H.R. sheet	441	262/241	738/772	0,19/0,18	0.96/0.41	710/896	0.12	-0.51	152	0.34
0030°	Cast steel	496	303/317		0.30/0.13	0.62/0.28	750/653	-0.082	-1), <1	190	0.38
Man-Ten	H.R. sheet	510	193/372	786	0.20/0.11	1.02/0.86	814-807	-0.071	-1165	262	0.51
1040	As forged	621	345/386		0.22/0.18	0.93/0.61	1050/1540	~0 [4	-0.57	173	0.28
RQC-100	H.R. Sheet	931	883/600	1172/1434	0.06/0.14	1.02/0.66	1330/1240	- 0.07	- 0.69	403	0.43
4142	Drawn at temp	1062	1048/745		0.18	0.35/0.22	1115/1450	-0.10	-11 51	310	0.28
4142	0 & 1	1413	1379/827		0.051/0.17	0.66/0.45	1825/1825	-0.08	-0.75	503	0.36
4142	0 के ह	1931	1724/1344		0.048/0.13	0.43/0.09	2170/2170	-0.081	-0.61	589	0.31
4340	H.R. and annealed	827	634/455		0.18	0.57/0.45	1090/1200	-0.095	-0 54	274	0.33
4340	9&1	1241	1172:758	1579/	0.066/0.14	0.84/0.73	1655/1655	-0 076	-0.62	492	0.40
4340	0&1	1469	1372/827		0.15	0,48/0,48	1560-2000	-0.091	-1) 6()	167	0.32
9262	Annealed	924	455-524	1744 1379	0.22/0.15	0.16/0.16	1046-1046	-0.071	-0.47	348	0.38
9262	Q&T	1000	786/648	1358	0.14/0.12	0.41/0.41	1220:1220	-0.073	-0.60	381	0.38
Aluminum											
1100-0	As received	110	97/62		-0.15	2.09/1.8	193	-0 106	-0.69	17	0.33
2024-T3		169	379/427	455/655	0.032/0.065	0.28/0.22	558/1100	-0.124	-0.59	151	0.32
2024-T4		476	303/441	807'—	0.20(0.08		634/1015	-0.11	-0.52	175	0.37
5456-H3		400	234/359			0.42/0.46	524/725	0.11	-0.67	124	0.31
7075-T6		579	469/524	827/	0.11/0.146	0.41/0.19	745/1315	-0.126	0.52	176	0.30

LIST OF REFERENCES

- 1. Bannantine, J. A., Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc., 1990.
- 2. Walter, R. W., Study of Statistical Variation of Load Spectra and Material Properties on Aircraft Fatigue Life, Naval Postgraduate School, 1992.
- 3. Fuchs, H. O., Metal Fatigue in Engineering, John Wiley & Sons, Inc., 1980.
- 4. Nakamura, S., Applied Numerical Methods With Software, Prentice-Hall, Inc., 1991.
- 5. The Waite Group, Microsoft QuickBasic Bible, Microsoft Press, 1990.
- 6. Microsoft, Microsoft QuickBasic, Microsoft Corporation, 1990.
- 7. Smith, B. L., Mean Strain Effects on the Strain Life Fatigue Curve, Naval Postgraduate School, 1993.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
2.	Library, Code 52 Naval Postgraduate School Monterey, California 93943-5002	2
3.	CDR Duym, Code 31 Naval Postgraduate School Monterey, California 93943-5000	1
4.	Professor Lindsey, Code AA/Li Naval Postgraduate School Monterey, California 93943-5000	1
5.	Professor Newberry, Code AA/Ne Naval Postgraduate School Monterey, California 93943-5000	1
6.	LT Michael V. Skelly USS AMERICA Air Department FPO, New York, NY 09501	2